参考链接: Python中的numpy.flipud
numpy.argsort(), numpy.argmax(), numpy.argmin()用法
numpy.argsort(a, axis=-1, kind=’quicksort’, order=None)
功能:将矩阵a按照axis排序,并返回排序后的索引
参数:a为输入矩阵,axis为需要排序的维度,axis=0按列排序,axis=1按行排序
返回值:排序后的索引
# 一维向量
import numpy as np
a = np.array([1, 2, 3])
b = np.argsort(a)
print(b)
>> Out: [0 2 1]
# 二维向量,axis为默认值
import numpy as np
a = np.array([[1, 3, 2],[5, 7, 6]])
b = np.argsort(a)
print(b)
>> Out: [[0 2 1]
[0 2 1]]
# 二维向量,axis为0
import numpy as np
a = np.array([[1, 3, 2],[5, 7, 6]])
b = np.argsort(a, axis=0)
print(b)
>> Out: [[0 0 0]
[1 1 1]]
numpy.max(a, axis=-1, kind=’quicksort’, order=None)
功能:找到指定axis最大值,并返回最大值的索引
参数:a为输入矩阵,axis为寻找最大值的维度,axis=0按列寻找,axis=1按行寻找
返回值:最大值的索引
# 一维向量
import numpy as np
a = np.array([1, 2, 3])
b = np.argmax(a)
print(b)
>> Out: 2
# 二维向量,axis为默认值
import numpy as np
a = np.array([[1, 3, 2],[5, 7, 6]])
b = np.argmax(a)
print(b)
>> Out: 4
# 二维向量,axis为0
import numpy as np
a = np.array([[1, 3, 2],[5, 7, 6]])
b = np.argmax(a, axis=0)
print(b)
>> Out: [1 1 1]
# 二维向量,axis为1
import numpy as np
a = np.array([[1, 3, 2],[5, 7, 6]])
b = np.argmax(a, axis=1)
print(b)
>> Out: [1 1]
# 三维向量,axis为默认值
import numpy as np
a = np.array([[[1, 3, 2],[5, 7, 6]], [[4, 8, 6],[5, 7, 9]]])
b = np.argmax(a)
print(b)
>> Out: 11
# 三维向量,axis为0
import numpy as np
a = np.array([[[1, 3, 2],[5, 7, 6]], [[4, 8, 6],[5, 7, 9]]])
b = np.argmax(a, axis=0)
print(b)
>> Out: [[1 1 1]
[0 0 1]]
# 三维向量,axis为1
import numpy as np
a = np.array([[[1, 3, 2],[5, 7, 6]], [[4, 8, 6],[5, 7, 9]]])
b = np.argmax(a, axis=1)
print(b)
>> Out: [[1 1 1]
[1 0 1]]
numpy.min(a, axis=-1, kind=’quicksort’, order=None)
功能:找到指定axis最小值,并返回最小值的索引
参数:a为输入矩阵,axis为寻找最小值的维度,axis=0按列寻找,axis=1按行寻找
返回值:最小值的索引