numpy.argsort(), numpy.argmax(), numpy.argmin()用法

2021-01-04 10:13:00 浏览数 (1)

参考链接: Python中的numpy.flipud

numpy.argsort(), numpy.argmax(), numpy.argmin()用法 

 numpy.argsort(a, axis=-1, kind=’quicksort’, order=None)  

功能:将矩阵a按照axis排序,并返回排序后的索引 

参数:a为输入矩阵,axis为需要排序的维度,axis=0按列排序,axis=1按行排序 

返回值:排序后的索引 

# 一维向量

import numpy as np

a = np.array([1, 2, 3])

b = np.argsort(a)

print(b)

>> Out: [0 2 1]

# 二维向量,axis为默认值

import numpy as np

a = np.array([[1, 3, 2],[5, 7, 6]])

b = np.argsort(a)

print(b)

>> Out: [[0 2 1]

         [0 2 1]]

# 二维向量,axis为0

import numpy as np

a = np.array([[1, 3, 2],[5, 7, 6]])

b = np.argsort(a, axis=0)

print(b)

>> Out: [[0 0 0]

         [1 1 1]]

 numpy.max(a, axis=-1, kind=’quicksort’, order=None)  

功能:找到指定axis最大值,并返回最大值的索引 

参数:a为输入矩阵,axis为寻找最大值的维度,axis=0按列寻找,axis=1按行寻找 

返回值:最大值的索引 

# 一维向量

import numpy as np

a = np.array([1, 2, 3])

b = np.argmax(a)

print(b)

>> Out: 2

# 二维向量,axis为默认值

import numpy as np

a = np.array([[1, 3, 2],[5, 7, 6]])

b = np.argmax(a)

print(b)

>> Out: 4

# 二维向量,axis为0

import numpy as np

a = np.array([[1, 3, 2],[5, 7, 6]])

b = np.argmax(a, axis=0)

print(b)

>> Out: [1 1 1]

# 二维向量,axis为1

import numpy as np

a = np.array([[1, 3, 2],[5, 7, 6]])

b = np.argmax(a, axis=1)

print(b)

>> Out: [1 1]

# 三维向量,axis为默认值

import numpy as np

a = np.array([[[1, 3, 2],[5, 7, 6]], [[4, 8, 6],[5, 7, 9]]])

b = np.argmax(a)

print(b)

>> Out: 11

# 三维向量,axis为0

import numpy as np

a = np.array([[[1, 3, 2],[5, 7, 6]], [[4, 8, 6],[5, 7, 9]]])

b = np.argmax(a, axis=0)

print(b)

>> Out: [[1 1 1]

         [0 0 1]]

# 三维向量,axis为1

import numpy as np

a = np.array([[[1, 3, 2],[5, 7, 6]], [[4, 8, 6],[5, 7, 9]]])

b = np.argmax(a, axis=1)

print(b)

>> Out: [[1 1 1]

         [1 0 1]]

 numpy.min(a, axis=-1, kind=’quicksort’, order=None)  

功能:找到指定axis最小值,并返回最小值的索引 

参数:a为输入矩阵,axis为寻找最小值的维度,axis=0按列寻找,axis=1按行寻找 

返回值:最小值的索引

0 人点赞