参考链接: Python中的numpy.iscomplexobj
http://blog.csdn.net/pipisorry/article/details/48208433
真值测试Truth value testing
all(a[, axis, out, keepdims])Test whether all array elements along a given axis evaluate to True.any(a[, axis, out, keepdims])Test whether any array element along a given axis evaluates to True.
只要数组中有一个值为True,则any()返回True;而只有数组的全部元素都为True,all()才返回True。
也可以直接当成array数组的方法使用。
判断numpy数组是否为空
if a.size: print('array is not empty')
如果通过python列表,把一个列表作为一个布尔值会产生True如果有项目,False如果它是空的。lst = []if lst: print "array has items"if not lst: print "array is empty"
[Python的-如何检查数组不为空?]
判断numpy数组中是否有True
array.any()
皮皮blog
数组内容Array contents
isfinite(x[, out])Test element-wise for finiteness (not infinity or not Not a Number).isinf(x[, out])Test element-wise for positive or negative infinity.isnan(x[, out])Test element-wise for NaN and return result as a boolean array.isneginf(x[, y])Test element-wise for negative infinity, return result as bool array.isposinf(x[, y])Test element-wise for positive infinity, return result as bool array.
numpy.isnan
numpy判断一个元素是否为np.NaN,判断某元素是否是nan
numpy.isnan(element)
Note: 不能使用array[0] == np.NaN,总是返回False!
numpy数组元素替换numpy.nan_to_num(x)
判断某元素是否是nan,inf,neginf,如果是,nan换为0,inf换为一个非常大的数,neginf换为非常小的数
numpy.nan_to_num(x)Replace nan with zero and inf with finite numbers.Returns an array or scalar replacing Not a Number (NaN) with zero, (positive) infinity with a very large number and negative infinity with a very small (or negative) number.
数组类型测试Array type testing
iscomplex(x)Returns a bool array, where True if input element is complex.iscomplexobj(x)Check for a complex type or an array of complex numbers.isfortran(a)Returns True if the array is Fortran contiguous but not C contiguous.isreal(x)Returns a bool array, where True if input element is real.isrealobj(x)Return True if x is a not complex type or an array of complex numbers.isscalar(num)Returns True if the type of num is a scalar type.
逻辑操作Logical operations
logical_and(x1, x2[, out])Compute the truth value of x1 AND x2 element-wise.logical_or(x1, x2[, out])Compute the truth value of x1 OR x2 element-wise.logical_not(x[, out])Compute the truth value of NOT x element-wise.logical_xor(x1, x2[, out])Compute the truth value of x1 XOR x2, element-wise.
两个0-1array相与操作
判断两个0-1array有多少个相同的1, 两种方式
rate = np.count_nonzero(np.logical_and(fs_predict_array, ground_truth_array))rate = np.count_nonzero(fs_predict_array * ground_truth_array)不过fs_predict_array
* ground_truth_array返回的是0-1array,而np.logical_and(fs_predict_array ,ground_truth_array)返回的是True-False array,但是都可以使用sum()得到1或者True的数目。
lz亲测下面的logical_and操作运行速度更快,没有count_nonzero会更快。
皮皮blog
比较Comparison
allclose(a, b[, rtol, atol, equal_nan])Returns True if two arrays are element-wise equal within a tolerance.isclose(a, b[, rtol, atol, equal_nan])Returns a boolean array where two arrays are element-wise equal within a tolerance.array_equal(a1, a2)True if two arrays have the same shape and elements, False otherwise.array_equiv(a1, a2)Returns True if input arrays are shape consistent and all elements equal.
greater(x1, x2[, out])Return the truth value of (x1 > x2) element-wise.greater_equal(x1, x2[, out])Return the truth value of (x1 >= x2) element-wise.less(x1, x2[, out])Return the truth value of (x1 < x2) element-wise.less_equal(x1, x2[, out])Return the truth value of (x1 =< x2) element-wise.equal(x1, x2[, out])Return (x1 == x2) element-wise.not_equal(x1, x2[, out])Return (x1 != x2) element-wise.
allclose
如果两个数组在tolerance误差范围内相等,则返回True。
from: http://blog.csdn.net/pipisorry/article/details/48208433
ref: Logic functions