参考链接: Python中的numpy.isposinf
NumPy包括几个常量: np.e、np.pi、 np.inf、 np.nan、np.NINF、np.PZERO & np.NZERO、np.euler_gamma、np.newaxis
文章目录
np.enp.pinp.infnp.nannp.NINFnp.PZERO & np.NZEROnp.euler_gammanp.newaxis
np.e
exp : 指数函数日志:自然对数。 也称为欧拉的常数,自然对数的基础,纳皮尔的常数。
e = 2.71828182845904523536028747135266249775724709369995…
np.pi
pi:圆周率 pi = 3.1415926535897932384626433…
np.inf
注意! Inf,Infinity,PINF 和 infty 是 inf 的别名 NumPy 使用IEEE二进制浮点算法标准(IEEE 754), 表示(正)无穷大 这意味着Not a Number不等于无穷大。 此外,正无穷大不等于负无穷大。 但无穷大相当于正无穷大。
返回
y : float (正无穷大的浮点表示。)
另见
isinf : 显示哪些元素为正或负无穷大。isposinf : 显示哪些元素是正无穷大。isneginf : 显示哪些元素为负无穷大。isnan : 显示哪些元素不是数字。isfinite : 显示哪些元素是有限的(不是非数字,正无穷大和负无穷大中的一个)
>>> np.inf
inf
>>> np.array([1]) / 0.
array([ Inf])
np.nan
注意! NaN 和 NAN 是 nan 的别名。 NumPy使用IEEE二进制浮点算法标准(IEEE 754),表示非数字(NaN) 这意味着Not a Number不等于无穷大。
另见
isnan : 显示哪些元素不是数字。isfinite : 显示哪些元素是有限的(不是非数字,正无穷大和负无穷大中的一个)
>>> np.nan
nan
>>> np.log(-1)
nan
>>> np.log([-1, 1, 2])
array([ NaN , 0. , 0.69314718 ])
np.NINF
注意! NumPy使用IEEE二进制浮点算法标准(IEEE 754),表示负无穷大 这意味着Not a Number不等于无穷大。 此外,正无穷大不等于负无穷大。 但无穷大相当于正无穷大。
返回
y : float (负无穷大的浮点表示)
>>> np.NINF
-inf
>>> np.log(0)
-inf
np.PZERO & np.NZERO
注意 np.PZERO 表示正零,正零被认为是有限数。 np.NZERO 表示负零,负零被认为是有限数。
返回
y = np.PZERO() : float (正零的浮点表示)y = np.NZERO() : float (负零点的浮点表示)
另外
isinf : 显示哪些元素为正或负无穷大。isposinf : 显示哪些元素是正无穷大。isneginf : 显示哪些元素为负无穷大。isnan : 显示哪些元素不是数字。isfinite : 显示哪些元素是有限的 - 不是(非数字,正无穷大和负无穷大)之一。
>>> np.PZERO
0.0
>>> np.NZERO
-0.0
>>> np.isfinite([np.PZERO])
array([ True])
>>> np.isnan([np.PZERO])
array([False])
>>> np.isinf([np.PZERO])
array([False])
____________________________________________________________________
>>> np.NZERO
-0.0
>>> np.PZERO
0.0
>>> np.isfinite([np.NZERO])
array([ True])
>>> np.isnan([np.NZERO])
array([False])
>>> np.isinf([np.NZERO])
array([False])
np.euler_gamma
γ = 0.5772156649015328606065120900824024310421…
np.newaxis
None 的便捷别名,对索引数组很有用。
>>> newaxis is None
True
>>> x = np.arange(3)
>>> x
array([0, 1, 2])
>>> x[:, newaxis]
array([[0],
[1],
[2]])
>>> x[:, newaxis, newaxis]
array([[[0]],
[[1]],
[[2]]])
>>> x[:, newaxis] * x
array([[0, 0, 0],
[0, 1, 2],
[0, 2, 4]])
外积,与 outer(x, y) 相同:
>>> y = np.arange(3, 6)
>>> x[:, newaxis] * y
array([[ 0, 0, 0],
[ 3, 4, 5],
[ 6, 8, 10]])
x[newaxis, :] 相当于 x[newaxis] 和 x[None]:
>>> x[newaxis, :].shape
(1, 3)
>>> x[newaxis].shape
(1, 3)
>>> x[None].shape
(1, 3)
>>> x[:, newaxis].shape
(3, 1)