python fmod函数_Python numpy.fmod方法代码示例

2021-01-06 17:47:22 浏览数 (1)

参考链接: Python中的numpy.greater_equal

本文整理汇总了Python中numpy.fmod方法的典型用法代码示例。如果您正苦于以下问题:Python numpy.fmod方法的具体用法?Python numpy.fmod怎么用?Python numpy.fmod使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在模块numpy的用法示例。

 在下文中一共展示了numpy.fmod方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

 示例1: test_NotImplemented_not_returned

 ​点赞 6

 ​

 # 需要导入模块: import numpy [as 别名]

 # 或者: from numpy import fmod [as 别名]

 def test_NotImplemented_not_returned(self):

 # See gh-5964 and gh-2091. Some of these functions are not operator

 # related and were fixed for other reasons in the past.

 binary_funcs = [

 np.power, np.add, np.subtract, np.multiply, np.divide,

 np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,

 np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,

 np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,

 np.logical_and, np.logical_or, np.logical_xor, np.maximum,

 np.minimum, np.mod,

 np.greater, np.greater_equal, np.less, np.less_equal,

 np.equal, np.not_equal]

 a = np.array('1')

 b = 1

 c = np.array([1., 2.])

 for f in binary_funcs:

 assert_raises(TypeError, f, a, b)

 assert_raises(TypeError, f, c, a)

 开发者ID:Frank-qlu,项目名称:recruit,代码行数:21,

 示例2: test_NotImplemented_not_returned

 ​点赞 6

 ​

 # 需要导入模块: import numpy [as 别名]

 # 或者: from numpy import fmod [as 别名]

 def test_NotImplemented_not_returned(self):

 # See gh-5964 and gh-2091. Some of these functions are not operator

 # related and were fixed for other reasons in the past.

 binary_funcs = [

 np.power, np.add, np.subtract, np.multiply, np.divide,

 np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,

 np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,

 np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,

 np.logical_and, np.logical_or, np.logical_xor, np.maximum,

 np.minimum, np.mod

 ]

 # These functions still return NotImplemented. Will be fixed in

 # future.

 # bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]

 a = np.array('1')

 b = 1

 for f in binary_funcs:

 assert_raises(TypeError, f, a, b)

 开发者ID:abhisuri97,项目名称:auto-alt-text-lambda-api,代码行数:22,

 示例3: test_vectorized_intrin2

 ​点赞 6

 ​

 # 需要导入模块: import numpy [as 别名]

 # 或者: from numpy import fmod [as 别名]

 def test_vectorized_intrin2(dtype="float32"):

 c2 = tvm.tir.const(2, dtype=dtype)

 test_funcs = [

 (tvm.tir.power, lambda x : np.power(x, 2.0)),

 (tvm.tir.fmod, lambda x : np.fmod(x, 2.0))

 ]

 def run_test(tvm_intrin, np_func):

 if not tvm.gpu(0).exist or not tvm.runtime.enabled("cuda"):

 print("skip because cuda is not enabled..")

 return

 n = 128

 A = te.placeholder((n,), dtype=dtype, name='A')

 B = te.compute((n,), lambda i: tvm_intrin(A[i], c2), name='B')

 s = sched(B)

 f = tvm.build(s, [A, B], "cuda")

 ctx = tvm.gpu(0)

 a = tvm.nd.array(np.random.uniform(0, 1, size=n).astype(A.dtype), ctx)

 b = tvm.nd.array(np.zeros(shape=(n,)).astype(A.dtype), ctx)

 f(a, b)

 tvm.testing.assert_allclose(b.asnumpy(), np_func(a.asnumpy()), atol=1e-3, rtol=1e-3)

 for func in test_funcs:

 run_test(*func)

 开发者ID:apache,项目名称:incubator-tvm,代码行数:26,

 示例4: test_mod

 ​点赞 5

 ​

 # 需要导入模块: import numpy [as 别名]

 # 或者: from numpy import fmod [as 别名]

 def test_mod(self):

 if legacy_opset_pre_ver(10):

 raise unittest.SkipTest("ONNX version {} doesn't support Mod.".format(

 defs.onnx_opset_version()))

 x = self._get_rnd_float32(shape=[5, 5])

 y = self._get_rnd_float32(shape=[5, 5])

 node_def = helper.make_node("Mod", ["X", "Y"], ["Z"], fmod=0)

 output = run_node(node_def, [x, y])

 np.testing.assert_almost_equal(output["Z"], np.mod(x, y))

 node_def = helper.make_node("Mod", ["X", "Y"], ["Z"], fmod=1)

 output = run_node(node_def, [x, y])

 np.testing.assert_almost_equal(output["Z"], np.fmod(x, y))

 开发者ID:onnx,项目名称:onnx-tensorflow,代码行数:14,

 示例5: __setattr__

 ​点赞 5

 ​

 # 需要导入模块: import numpy [as 别名]

 # 或者: from numpy import fmod [as 别名]

 def __setattr__(self, key, value):

 """Set attributes with conversion to ndarray where needed."""

 is_set = hasattr(self, key) # == False in constructor

 # parameter canonicalization and some validation via reshaping

 if value is None:

 # TODO: maybe forbid for some fields

 pass

 elif key == 'translation':

 value = np.array(value, dtype=np.float32).reshape(3, 1)

 elif key == 'rotation':

 value = np.array(value, dtype=np.float32).reshape(4)

 value[0] = np.fmod(value[0], 2.0 * np.pi)

 if value[0] < 0.0:

 value[0] = 2.0 * np.pi

 value[0] = np.cos(value[0] / 2)

 norm = np.linalg.norm(value[1:4])

 needed_norm = np.sqrt(1 - value[0] * value[0])

 if abs(norm - needed_norm) > _epsilon:

 if norm < _epsilon:

 raise ValueError('Norm of (x, y, z) part of quaternion too close to zero')

 value[1:4] = value[1:4] / norm * needed_norm

 # assert abs(np.linalg.norm(value) - 1.0) < _epsilon

 elif key == 'scaling':

 value = np.array(value, dtype=np.float32).reshape(3)

 elif key in ['parent_matrix', 'custom_matrix', 'model_matrix']:

 value = np.array(value, dtype=np.float32).reshape((4, 4))

 super(Transform, self).__setattr__(key, value)

 if is_set and key != 'model_matrix':

 self._recompute_matrix()

 self._notify_dependants()

 开发者ID:K3D-tools,项目名称:K3D-jupyter,代码行数:38,

 示例6: __init__

 ​点赞 5

 ​

 # 需要导入模块: import numpy [as 别名]

 # 或者: from numpy import fmod [as 别名]

 def __init__(self, input_grid, pitch, apodization, orientation=0, even_grid=False):

 '''An even asphere micro-lens array.

 Parameters

 ----------

 input_grid : Grid

 The grid on which the periodic optical element is evaluated.

 pitch : scalar

 The pitch of the periodic optical element.

 apodization : Apodizer

 The apodizer that will be evaluated on the periodic grid.

 orientation : scalar

 The orientation of the periodic optical element.

 even_grid : bool

 This determines whether zero is in between two elements or if it is the center of an element.

 '''

 self.input_grid = input_grid.copy()

 self.input_grid = self.input_grid.rotated(orientation)

 if even_grid:

 xf = (np.fmod(abs(self.input_grid.x), pitch) - pitch / 2) * np.sign(self.input_grid.x)

 yf = (np.fmod(abs(self.input_grid.y), pitch) - pitch / 2) * np.sign(self.input_grid.y)

 else:

 xf = (np.fmod(abs(self.input_grid.x) pitch / 2, pitch) - pitch / 2) * np.sign(self.input_grid.x)

 yf = (np.fmod(abs(self.input_grid.y) pitch / 2, pitch) - pitch / 2) * np.sign(self.input_grid.y)

 periodic_grid = CartesianGrid(UnstructuredCoords((xf, yf)))

 self.apodization = apodization(periodic_grid)

 开发者ID:ehpor,项目名称:hcipy,代码行数:30,

 示例7: forward

 ​点赞 5

 ​

 # 需要导入模块: import numpy [as 别名]

 # 或者: from numpy import fmod [as 别名]

 def forward(self, inputs, device):

 x, divisor = inputs

 y = functions.fmod(x, divisor)

 return y,

 开发者ID:chainer,项目名称:chainer,代码行数:6,

 示例8: forward_expected

 ​点赞 5

 ​

 # 需要导入模块: import numpy [as 别名]

 # 或者: from numpy import fmod [as 别名]

 def forward_expected(self, inputs):

 x, divisor = inputs

 expected = numpy.fmod(x, divisor)

 expected = numpy.asarray(expected)

 return expected,

 开发者ID:chainer,项目名称:chainer,代码行数:7,

 示例9: testFloat

 ​点赞 5

 ​

 # 需要导入模块: import numpy [as 别名]

 # 或者: from numpy import fmod [as 别名]

 def testFloat(self):

 x = [0.5, 0.7, 0.3]

 for dtype in [np.float32, np.double]:

 # Test scalar and vector versions.

 for denom in [x[0], [x[0]] * 3]:

 x_np = np.array(x, dtype=dtype)

 with self.test_session(use_gpu=True):

 x_tf = constant_op.constant(x_np, shape=x_np.shape)

 y_tf = math_ops.mod(x_tf, denom)

 y_tf_np = y_tf.eval()

 y_np = np.fmod(x_np, denom)

 self.assertAllClose(y_tf_np, y_np, atol=1e-2)

 开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:14,

 示例10: testTruncateModInt

 ​点赞 5

 ​

 # 需要导入模块: import numpy [as 别名]

 # 或者: from numpy import fmod [as 别名]

 def testTruncateModInt(self):

 nums, divs = self.intTestData()

 with self.test_session():

 tf_result = math_ops.truncatemod(nums, divs).eval()

 np_result = np.fmod(nums, divs)

 self.assertAllEqual(tf_result, np_result)

 开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:8,

 示例11: testTruncateModFloat

 ​点赞 5

 ​

 # 需要导入模块: import numpy [as 别名]

 # 或者: from numpy import fmod [as 别名]

 def testTruncateModFloat(self):

 nums, divs = self.floatTestData()

 with self.test_session():

 tf_result = math_ops.truncatemod(nums, divs).eval()

 np_result = np.fmod(nums, divs)

 self.assertAllEqual(tf_result, np_result)

 开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:8,

 示例12: wrap_180

 ​点赞 5

 ​

 # 需要导入模块: import numpy [as 别名]

 # 或者: from numpy import fmod [as 别名]

 def wrap_180(self, angle):

 if (angle > 3*np.pi or angle < -3*np.pi):

 angle = np.fmod(angle,2*np.pi)

 if (angle > np.pi):

 angle = angle - 2*np.pi

 if (angle < - np.pi):

 angle = angle 2*np.pi

 return angle;

 开发者ID:purdue-biorobotics,项目名称:flappy,代码行数:10,

 示例13: _periodic_boundary

 ​点赞 5

 ​

 # 需要导入模块: import numpy [as 别名]

 # 或者: from numpy import fmod [as 别名]

 def _periodic_boundary(self,x,bound):

 return np.fmod(x,bound)-np.trunc(x/bound)*bound

 开发者ID:qkitgroup,项目名称:qkit,代码行数:4,

 示例14: myProj

 ​点赞 5

 ​

 # 需要导入模块: import numpy [as 别名]

 # 或者: from numpy import fmod [as 别名]

 def myProj(x):

 angle = torch.norm(x, 2, 1, True)

 axis = F.normalize(x)

 angle = torch.fmod(angle, 2*np.pi)

 return angle*axis

 # my model for pose estimation: feature model 1layer pose model x 12

 开发者ID:JHUVisionLab,项目名称:multi-modal-regression,代码行数:10,

 示例15: test_fmod

 ​点赞 5

 ​

 # 需要导入模块: import numpy [as 别名]

 # 或者: from numpy import fmod [as 别名]

 def test_fmod(self):

 A, A_rdd = self.make_dense_rdd((8, 3))

 B, B_rdd = self.make_dense_rdd((1, 3))

 np_res = np.fmod(A, B)

 assert_array_equal(

 A_rdd.fmod(B).toarray(), np_res

 )

 开发者ID:lensacom,项目名称:sparkit-learn,代码行数:9,

 注:本文中的numpy.fmod方法示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。

0 人点赞