Numpy 数学函数及逻辑函数

2021-01-07 10:25:46 浏览数 (1)

参考链接: Python中的numpy.logical_xor

目录 

一、向量化和广播 

二、数学函数 

算数运算 

numpy.add 

numpy.subtract 

numpy.multiply 

numpy.divide 

numpy.floor_divide 

numpy.power 

三、三角函数 

numpy.sin 

numpy.cos 

numpy.tan 

numpy.arcsin 

numpy.arccos 

numpy.arctan 

四、逻辑函数 

真值测试 

numpy.all 

numpy.any 

数组内容¶ 

numpy.isnan 

逻辑运算 

numpy.logical_not 

numpy.logical_and 

numpy.logical_or 

numpy.logical_xor 

五、对照 

numpy.greater 

numpy.greater_equal 

numpy.equal 

numpy.not_equal 

numpy.less 

numpy.less_equal 

numpy.isclose 

numpy.allclose 

六、指数和对数 

numpy.exp 

numpy.log 

numpy.exp2¶ 

numpy.log2 

numpy.log10 

函数描述用法abs fabs计算 整型/浮点/复数 的绝对值 对于没有复数的快速版本求绝对值np.abs() np.fabs()sqrt计算元素的平方根。等价于array ** 0.5np.sqrt()square计算元素的平方。等价于 array **2np.squart()exp计算以自然常数e为底的幂次方np.exp()log log10 log2 log1p自然对数(e) 基于10的对数 基于2的对数 基于log(1 x)的对数np.log() np.log10() np.log2() np.log1p()sign计算元素的符号:1:正数 0:0 -1:负数np.sign()ceil计算大于或等于元素的最小整数np.ceil()floor计算小于或等于元素的最大整数np.floor()rint对浮点数取整到最近的整数,但不改变浮点数类型np.rint()modf分别返回浮点数的整数和小数部分的数组np.modf()isnan返回布尔数组标识哪些元素是 NaN (不是一个数)np.isnan()isfinite isinf返回布尔数组标识哪些元素是有限的(non-inf, non-NaN)或无限的np.isfiniter() np.isinf()cos, cosh, sin sinh, tan, tanh三角函数 arccos, arccosh, arcsin, arcsinh, arctan, arctanh反三角函数 logical_and/or/not/xor逻辑与/或/非/异或 等价于 ‘&’ ‘|’ ‘!’ ‘^’测试见下方

# 逻辑与

>>> np.logical_and(True, False)

False

>>> np.logical_and([True, False], [False, False])

array([False, False], dtype=bool)

>>> x = np.arange(5)

>>> np.logical_and(x>1, x<4)

array([False, False,  True,  True, False], dtype=bool)

# 逻辑或

>>> np.logical_or(True, False)

True

>>> np.logical_or([True, False], [False, False])

array([ True, False], dtype=bool)

>>> x = np.arange(5)

>>> np.logical_or(x < 1, x > 3)

array([ True, False, False, False,  True], dtype=bool)

# 逻辑非

>>> np.logical_not(3)

False

>>> np.logical_not([True, False, 0, 1])

array([False,  True,  True, False], dtype=bool)

>>> x = np.arange(5)

>>> np.logical_not(x<3)

array([False, False, False,  True,  True], dtype=bool)

# 逻辑异或

>>> np.logical_xor(True, False)

True

>>> np.logical_xor([True, True, False, False], [True, False, True, False])

array([False,  True,  True, False], dtype=bool)

>>> x = np.arange(5)

>>> np.logical_xor(x < 1, x > 3)

array([ True, False, False, False,  True], dtype=bool)

>>> np.logical_xor(0, np.eye(2))

array([[ True, False],

       [False,  True]], dtype=bool)

一、向量化和广播 

向量化和广播这两个概念是 numpy 内部实现的基础。有了向量化,编写代码时无需使用显式循环。这些循环实际上不能省略,只不过是在内部实现,被代码中的其他结构代替。向量化的应用使得代码更简洁,可读性更强,也可以说使用了向量化方法的代码看上去更“Pythonic”。 

广播(Broadcasting)机制描述了 numpy 如何在算术运算期间处理具有不同形状的数组,让较小的数组在较大的数组上“广播”,以便它们具有兼容的形状。并不是所有的维度都要彼此兼容才符合广播机制的要求,但它们必须满足一定的条件。 

若两个数组的各维度兼容,也就是两个数组的每一维等长,或其中一个数组为 一维,那么广播机制就适用。如果这两个条件不满足,numpy就会抛出异常,说两个数组不兼容。 

总结来说,广播的规则有三个: 

如果两个数组的维度数dim不相同,那么小维度数组的形状将会在左边补1。如果shape维度不匹配,但是有维度是1,那么可以扩展维度是1的维度匹配另一个数组;如果shape维度不匹配,但是没有任何一个维度是1,则匹配引发错误;

二维数组加一维数组

import numpy as np

x = np.arange(4)

y = np.ones((3, 4))

print(x.shape)  # (4,)

print(y.shape)  # (3, 4)

print((x y).shape)  # (3, 4)

print(x y)

# [[1. 2. 3. 4.]

#  [1. 2. 3. 4.]

#  [1. 2. 3. 4.]] 

两个数组均需要广播

import numpy as np

x = np.arange(4).reshape(4, 1)

y = np.ones(5)

print(x.shape)  # (4, 1)

print(y.shape)  # (5,)

print((x y).shape)  # (4, 5)

print(x y)

# [[1. 1. 1. 1. 1.]

#  [2. 2. 2. 2. 2.]

#  [3. 3. 3. 3. 3.]

#  [4. 4. 4. 4. 4.]]

x = np.array([0.0, 10.0, 20.0, 30.0])

y = np.array([1.0, 2.0, 3.0])

z = x[:, np.newaxis] y

print(z)

# [[ 1.  2.  3.]

#  [11. 12. 13.]

#  [21. 22. 23.]

#  [31. 32. 33.]] 

不匹配报错的例子

import numpy as np

x = np.arange(4)

y = np.ones(5)

print(x.shape)  # (4,)

print(y.shape)  # (5,)

print(x y)

# ValueError: operands could not be broadcast together with shapes (4,) (5,)  

二、数学函数 

算数运算 

numpy.add 

numpy.subtract 

numpy.multiply 

numpy.divide 

numpy.floor_divide 

numpy.power 

numpy.add(x1, x2, *args, **kwargs) Add arguments element-wise.numpy.subtract(x1, x2, *args, **kwargs) Subtract arguments element-wise.numpy.multiply(x1, x2, *args, **kwargs) Multiply arguments element-wise.numpy.divide(x1, x2, *args, **kwargs) Returns a true division of the inputs, element-wise.numpy.floor_divide(x1, x2, *args, **kwargs) Return the largest integer smaller or equal to the division of the inputs.numpy.power(x1, x2, *args, **kwargs) First array elements raised to powers from second array, element-wise.

在 numpy 中对以上函数进行了运算符的重载,且运算符为 元素级。也就是说,它们只用于位置相同的元素之间,所得到的运算结果组成一个新的数组。 

注意 numpy 的广播规则。

import numpy as np

x = np.array([1, 2, 3, 4, 5, 6, 7, 8])

y = x 1

print(y)

print(np.add(x, 1))

# [2 3 4 5 6 7 8 9]

y = x - 1

print(y)

print(np.subtract(x, 1))

# [0 1 2 3 4 5 6 7]

y = x * 2

print(y)

print(np.multiply(x, 2))

# [ 2  4  6  8 10 12 14 16]

y = x / 2

print(y)

print(np.divide(x, 2))

# [0.5 1.  1.5 2.  2.5 3.  3.5 4. ]

y = x // 2

print(y)

print(np.floor_divide(x, 2))

# [0 1 1 2 2 3 3 4]

y = x ** 2

print(y)

print(np.power(x, 2))

# [ 1  4  9 16 25 36 49 64] 

注意 numpy 的广播规则。

import numpy as np

x = np.array([[11, 12, 13, 14, 15],

              [16, 17, 18, 19, 20],

              [21, 22, 23, 24, 25],

              [26, 27, 28, 29, 30],

              [31, 32, 33, 34, 35]])

y = x 1

print(y)

print(np.add(x, 1))

# [[12 13 14 15 16]

#  [17 18 19 20 21]

#  [22 23 24 25 26]

#  [27 28 29 30 31]

#  [32 33 34 35 36]]

y = x - 1

print(y)

print(np.subtract(x, 1))

# [[10 11 12 13 14]

#  [15 16 17 18 19]

#  [20 21 22 23 24]

#  [25 26 27 28 29]

#  [30 31 32 33 34]]

y = x * 2

print(y)

print(np.multiply(x, 2))

# [[22 24 26 28 30]

#  [32 34 36 38 40]

#  [42 44 46 48 50]

#  [52 54 56 58 60]

#  [62 64 66 68 70]]

y = x / 2

print(y)

print(np.divide(x, 2))

# [[ 5.5  6.   6.5  7.   7.5]

#  [ 8.   8.5  9.   9.5 10. ]

#  [10.5 11.  11.5 12.  12.5]

#  [13.  13.5 14.  14.5 15. ]

#  [15.5 16.  16.5 17.  17.5]]

y = x // 2

print(y)

print(np.floor_divide(x, 2))

# [[ 5  6  6  7  7]

#  [ 8  8  9  9 10]

#  [10 11 11 12 12]

#  [13 13 14 14 15]

#  [15 16 16 17 17]]

y = x ** 2

print(y)

print(np.power(x, 2))

# [[ 121  144  169  196  225]

#  [ 256  289  324  361  400]

#  [ 441  484  529  576  625]

#  [ 676  729  784  841  900]

#  [ 961 1024 1089 1156 1225]] 

注意 numpy 的广播规则。

import numpy as np

x = np.array([[11, 12, 13, 14, 15],

              [16, 17, 18, 19, 20],

              [21, 22, 23, 24, 25],

              [26, 27, 28, 29, 30],

              [31, 32, 33, 34, 35]])

y = np.arange(1, 6)

print(y)

# [1 2 3 4 5]

z = x y

print(z)

print(np.add(x, y))

# [[12 14 16 18 20]

#  [17 19 21 23 25]

#  [22 24 26 28 30]

#  [27 29 31 33 35]

#  [32 34 36 38 40]]

z = x - y

print(z)

print(np.subtract(x, y))

# [[10 10 10 10 10]

#  [15 15 15 15 15]

#  [20 20 20 20 20]

#  [25 25 25 25 25]

#  [30 30 30 30 30]]

z = x * y

print(z)

print(np.multiply(x, y))

# [[ 11  24  39  56  75]

#  [ 16  34  54  76 100]

#  [ 21  44  69  96 125]

#  [ 26  54  84 116 150]

#  [ 31  64  99 136 175]]

z = x / y

print(z)

print(np.divide(x, y))

# [[11.          6.          4.33333333  3.5         3.        ]

#  [16.          8.5         6.          4.75        4.        ]

#  [21.         11.          7.66666667  6.          5.        ]

#  [26.         13.5         9.33333333  7.25        6.        ]

#  [31.         16.         11.          8.5         7.        ]]

z = x // y

print(z)

print(np.floor_divide(x, y))

# [[11  6  4  3  3]

#  [16  8  6  4  4]

#  [21 11  7  6  5]

#  [26 13  9  7  6]

#  [31 16 11  8  7]]

z = x ** np.full([1, 5], 2)

print(z)

print(np.power(x, np.full([5, 5], 2)))

# [[ 121  144  169  196  225]

#  [ 256  289  324  361  400]

#  [ 441  484  529  576  625]

#  [ 676  729  784  841  900]

#  [ 961 1024 1089 1156 1225]] 

三、三角函数 

numpy.sin 

numpy.cos 

numpy.tan 

numpy.arcsin 

numpy.arccos 

numpy.arctan 

numpy.sin(x, *args, **kwargs) Trigonometric sine, element-wise.numpy.cos(x, *args, **kwargs) Cosine element-wise.numpy.tan(x, *args, **kwargs) Compute tangent element-wise.numpy.arcsin(x, *args, **kwargs) Inverse sine, element-wise.numpy.arccos(x, *args, **kwargs) Trigonometric inverse cosine, element-wise.numpy.arctan(x, *args, **kwargs) Trigonometric inverse tangent, element-wise.

通用函数(universal function)通常叫作ufunc,它对数组中的各个元素逐一进行操作。这表明,通用函数分别处理输入数组的每个元素,生成的结果组成一个新的输出数组。输出数组的大小跟输入数组相同。 

三角函数等很多数学运算符合通用函数的定义,例如,计算平方根的sqrt()函数、用来取对数的log()函数和求正弦值的sin()函数。 

import numpy as np

x = np.linspace(start=0, stop=np.pi / 2, num=10)

print(x)

# [0.         0.17453293 0.34906585 0.52359878 0.6981317  0.87266463

#  1.04719755 1.22173048 1.3962634  1.57079633]

y = np.sin(x)

print(y)

# [0.         0.17364818 0.34202014 0.5        0.64278761 0.76604444

#  0.8660254  0.93969262 0.98480775 1.        ]

z = np.arcsin(y)

print(z)

# [0.         0.17453293 0.34906585 0.52359878 0.6981317  0.87266463

#  1.04719755 1.22173048 1.3962634  1.57079633]

y = np.cos(x)

print(y)

# [1.00000000e 00 9.84807753e-01 9.39692621e-01 8.66025404e-01

#  7.66044443e-01 6.42787610e-01 5.00000000e-01 3.42020143e-01

#  1.73648178e-01 6.12323400e-17]

z = np.arccos(y)

print(z)

# [0.         0.17453293 0.34906585 0.52359878 0.6981317  0.87266463

#  1.04719755 1.22173048 1.3962634  1.57079633]

y = np.tan(x)

print(y)

# [0.00000000e 00 1.76326981e-01 3.63970234e-01 5.77350269e-01

#  8.39099631e-01 1.19175359e 00 1.73205081e 00 2.74747742e 00

#  5.67128182e 00 1.63312394e 16]

z = np.arctan(y)

print(z)

# [0.         0.17453293 0.34906585 0.52359878 0.6981317  0.87266463

#  1.04719755 1.22173048 1.3962634  1.57079633] 

四、逻辑函数 

真值测试 

numpy.all 

numpy.any 

numpy.all(a, axis=None, out=None, keepdims=np._NoValue) Test whether all array elements along a given axis evaluate to True.numpy.any(a, axis=None, out=None, keepdims=np._NoValue) Test whether any array element along a given axis evaluates to True. import numpy as np

a = np.array([0, 4, 5])

b = np.copy(a)

print(np.all(a == b))  # True

print(np.any(a == b))  # True

b[0] = 1

print(np.all(a == b))  # False

print(np.any(a == b))  # True

print(np.all([1.0, np.nan]))  # True

print(np.any([1.0, np.nan]))  # True

a = np.eye(3)

print(np.all(a, axis=0))  # [False False False]

print(np.any(a, axis=0))  # [ True  True  True]   

数组内容¶ 

numpy.isnan 

numpy.isnan(x, *args, **kwargs) Test element-wise for NaN and return result as a boolean array.

a=np.array([1,2,np.nan])

print(np.isnan(a))

#[False False  True] 

逻辑运算 

numpy.logical_not 

numpy.logical_and 

numpy.logical_or 

numpy.logical_xor 

numpy.logical_not(x, *args, **kwargs)Compute the truth value of NOT x element-wise.numpy.logical_and(x1, x2, *args, **kwargs) Compute the truth value of x1 AND x2 element-wise.numpy.logical_or(x1, x2, *args, **kwargs)Compute the truth value of x1 OR x2 element-wise.numpy.logical_xor(x1, x2, *args, **kwargs)Compute the truth value of x1 XOR x2, element-wise.

计算非x元素的真值。

import numpy as np

print(np.logical_not(3))  

# False

print(np.logical_not([True, False, 0, 1]))

# [False  True  True False]

x = np.arange(5)

print(np.logical_not(x < 3))

# [False False False  True  True] 

计算x1 AND x2元素的真值。

print(np.logical_and(True, False))  

# False

print(np.logical_and([True, False], [True, False]))

# [ True False]

print(np.logical_and(x > 1, x < 4))

# [False False  True  True False] 

逐元素计算x1 OR x2的真值。

print(np.logical_or(True, False))

# True

print(np.logical_or([True, False], [False, False]))

# [ True False]

print(np.logical_or(x < 1, x > 3))

# [ True False False False  True] 

计算x1 XOR x2的真值,按元素计算。

print(np.logical_xor(True, False))

# True

print(np.logical_xor([True, True, False, False], [True, False, True, False]))

# [False  True  True False]

print(np.logical_xor(x < 1, x > 3))

# [ True False False False  True]

print(np.logical_xor(0, np.eye(2)))

# [[ True False]

#  [False  True]] 

五、对照 

numpy.greater 

numpy.greater_equal 

numpy.equal 

numpy.not_equal 

numpy.less 

numpy.less_equal 

numpy.greater(x1, x2, *args, **kwargs) Return the truth value of (x1 > x2) element-wise.numpy.greater_equal(x1, x2, *args, **kwargs) Return the truth value of (x1 >= x2) element-wise.numpy.equal(x1, x2, *args, **kwargs) Return (x1 == x2) element-wise.numpy.not_equal(x1, x2, *args, **kwargs) Return (x1 != x2) element-wise.numpy.less(x1, x2, *args, **kwargs) Return the truth value of (x1 < x2) element-wise.numpy.less_equal(x1, x2, *args, **kwargs) Return the truth value of (x1 =< x2) element-wise.

import numpy as np

x = np.array([1, 2, 3, 4, 5, 6, 7, 8])

y = x > 2

print(y)

print(np.greater(x, 2))

# [False False  True  True  True  True  True  True]

y = x >= 2

print(y)

print(np.greater_equal(x, 2))

# [False  True  True  True  True  True  True  True]

y = x == 2

print(y)

print(np.equal(x, 2))

# [False  True False False False False False False]

y = x != 2

print(y)

print(np.not_equal(x, 2))

# [ True False  True  True  True  True  True  True]

y = x < 2

print(y)

print(np.less(x, 2))

# [ True False False False False False False False]

y = x <= 2

print(y)

print(np.less_equal(x, 2))

# [ True  True False False False False False False] 

numpy.isclose 

numpy.allclose 

numpy.isclose(a, b, rtol=1.e-5, atol=1.e-8, equal_nan=False) Returns a boolean array where two arrays are element-wise equal within a tolerance.numpy.allclose(a, b, rtol=1.e-5, atol=1.e-8, equal_nan=False) Returns True if two arrays are element-wise equal within a tolerance.

numpy.allclose() 等价于 numpy.all(isclose(a, b, rtol=rtol, atol=atol, equal_nan=equal_nan))。 

The tolerance values are positive, typically very small numbers. The relative difference (rtol * abs(b)) and the absolute difference atol are added together to compare against the absolute difference between a and b. 

判断是否为True的计算依据:   

np.absolute(a - b) <= (atol rtol * absolute(b))

- atol:float,绝对公差。

- rtol:float,相对公差。 

np.absolute(a - b) <= (atol rtol * absolute(b))

- atol:float,绝对公差。

- rtol:float,相对公差。

NaNs are treated as equal if they are in the same place and if equal_nan=True. Infs are treated as equal if they are in the same place and of the same sign in both arrays. 

比较两个数组是否可以认为相等。

import numpy as np

x = np.isclose([1e10, 1e-7], [1.00001e10, 1e-8])

print(x)  # [ True False]

x = np.allclose([1e10, 1e-7], [1.00001e10, 1e-8])

print(x)  # False

x = np.isclose([1e10, 1e-8], [1.00001e10, 1e-9])

print(x)  # [ True  True]

x = np.allclose([1e10, 1e-8], [1.00001e10, 1e-9])

print(x)  # True

x = np.isclose([1e10, 1e-8], [1.0001e10, 1e-9])

print(x)  # [False  True]

x = np.allclose([1e10, 1e-8], [1.0001e10, 1e-9])

print(x)  # False

x = np.isclose([1.0, np.nan], [1.0, np.nan])

print(x)  # [ True False]

x = np.allclose([1.0, np.nan], [1.0, np.nan])

print(x)  # False

x = np.isclose([1.0, np.nan], [1.0, np.nan], equal_nan=True)

print(x)  # [ True  True]

x = np.allclose([1.0, np.nan], [1.0, np.nan], equal_nan=True)

print(x)  # True 

六、指数和对数 

numpy.exp 

numpy.log 

numpy.exp2¶ 

numpy.log2 

numpy.log10 

numpy.exp(x, *args, **kwargs) Calculate the exponential of all elements in the input array.numpy.log(x, *args, **kwargs) Natural logarithm, element-wise.numpy.exp2(x, *args, **kwargs) Calculate 2**p for all p in the input array.numpy.log2(x, *args, **kwargs) Base-2 logarithm of x.numpy.log10(x, *args, **kwargs) Return the base 10 logarithm of the input array, element-wise.

The natural logarithm log is the inverse of the exponential function, so that log(exp(x)) = x. The natural logarithm is logarithm in base e.

import numpy as np

x = np.arange(1, 5)

print(x)

# [1 2 3 4]

y = np.exp(x)

print(y)

# [ 2.71828183  7.3890561  20.08553692 54.59815003]

z = np.log(y)

print(z)

# [1. 2. 3. 4.]

0 人点赞