作者:Ross Taylor 编译:ronghuaiyang
导读
2020年Papers with Code 中最顶流的论文,代码和benchmark。
Papers with Code 中收集了各种机器学习的内容:论文,代码,结果,方便发现和比较。通过这些数据,我们可以了解ML社区中,今年哪些东西最有意思。下面我们总结了2020年最热门的带代码的论文、代码库和benchmark。
2020顶流论文
Tan等人的EfficientDet是2020年在Papers with Code上被访问最多的论文。
- EfficientDet: Scalable and Efficient Object Detection — Tan et al https://paperswithcode.com/paper/efficientdet-scalable-and-efficient-object
- Fixing the train-test resolution discrepancy — Touvron et al https://paperswithcode.com/paper/fixing-the-train-test-resolution-discrepancy-2
- ResNeSt: Split-Attention Networks — Zhang et al https://paperswithcode.com/paper/resnest-split-attention-networks
- Big Transfer (BiT) — Kolesnikov et al https://paperswithcode.com/paper/large-scale-learning-of-general-visual
- Object-Contextual Representations for Semantic Segmentation — Yuan et al https://paperswithcode.com/paper/object-contextual-representations-for
- Self-training with Noisy Student improves ImageNet classification — Xie et al https://paperswithcode.com/paper/self-training-with-noisy-student-improves
- YOLOv4: Optimal Speed and Accuracy of Object Detection — Bochkovskiy et al https://paperswithcode.com/paper/yolov4-optimal-speed-and-accuracy-of-object
- An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale — Dosovitskiy et al https://paperswithcode.com/paper/an-image-is-worth-16x16-words-transformers-1
- Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer — Raffel et al https://paperswithcode.com/paper/exploring-the-limits-of-transfer-learning
- Hierarchical Multi-Scale Attention for Semantic Segmentation — Tao et al https://paperswithcode.com/paper/hierarchical-multi-scale-attention-for
2020顶流代码库
Transformers是2020年在Papers with Code上被访问最多的代码库
- Transformers — Hugging Face — https://github.com/huggingface/transformers
- PyTorch Image Models — Ross Wightman — https://github.com/rwightman/pytorch-image-models
- Detectron2 — FAIR — https://github.com/facebookresearch/detectron2
- InsightFace — DeepInsight — https://github.com/deepinsight/insightface
- Imgclsmob — osmr — https://github.com/osmr/imgclsmob
- DarkNet — pjreddie — https://github.com/pjreddie/darknet
- PyTorchGAN — Erik Linder-Norén — https://github.com/eriklindernoren/PyTorch-GAN
- MMDetection — OpenMMLab — https://github.com/open-mmlab/mmdetection
- FairSeq — PyTorch — https://github.com/pytorch/fairseq
- Gluon CV — DMLC — https://github.com/dmlc/gluon-cv
2020顶流Benchmarks
ImageNet是2020年在Papers with Code上访问最多的benchmark
- ImageNet — Image Classification — https://paperswithcode.com/sota/image-classification-on-imagenet
- COCO — Object Detection / Instance Segmentation — https://paperswithcode.com/sota/object-detection-on-coco
- Cityscapes — Semantic Segmentation — https://paperswithcode.com/sota/semantic-segmentation-on-cityscapes
- CIFAR-10 — Image Classification — https://paperswithcode.com/sota/image-classification-on-cifar-10
- CIFAR-100 — Image Classification — https://paperswithcode.com/sota/image-classification-on-cifar-100
- PASCAL VOC 2012 — Semantic Segmentation — https://paperswithcode.com/sota/semantic-segmentation-on-pascal-voc-2012
- MPII Human Pose — Pose Estimation — https://paperswithcode.com/sota/pose-estimation-on-mpii-human-pose
- Market-1501 — Person Re-Identification — https://paperswithcode.com/sota/person-re-identification-on-market-1501
- MNIST — Image Classification — https://paperswithcode.com/sota/image-classification-on-mnist
- Human 3.6M — Human Pose Estimation -https://paperswithcode.com/sota/pose-estimation-on-mpii-human-pose