pytorch tensor 基础操作
代码语言:javascript
复制# -*- coding:utf-8 -*-
# /usr/bin/python
'''
@Author : Errol
@Describe:
@Evn :
@Date : 2019-09-19 23:54
'''
import torch
dtype = torch.float
device = torch.device("cpu")
# device = torch.device(“cuda:0”)#取消注释以在GPU上运行
# N是批量大小; D_in是输入维度;
# H是隐藏的维度; D_out是输出维度。
N, D_in, H, D_out = 64, 1000, 100, 10
# 创建随机Tensors以保持输入和输出。
# 设置requires_grad = False表示我们不需要计算渐变
# 在向后传球期间对于这些Tensors。
x = torch.randn(N, D_in, device=device, dtype=dtype)
y = torch.randn(N, D_out, device=device, dtype=dtype)
# 为权重创建随机Tensors。
# 设置requires_grad = True表示我们想要计算渐变
# 在向后传球期间尊重这些张贴。
w1 = torch.randn(D_in, H, device=device, dtype=dtype, requires_grad=True)
w2 = torch.randn(H, D_out, device=device, dtype=dtype, requires_grad=True)
learning_rate = 1e-6
for t in range(500):