01. 数据集
我们首先需要从互联网上获取包含墙壁裂缝的图像(URL格式)数据。总共包含1428张图像:其中一半是新的且未损坏的墙壁;其余部分显示了各种尺寸和类型的裂缝。
第一步:读取图像,并调整大小。
代码语言:javascript复制images = []
for url in tqdm.tqdm(df['content']):
response = requests.get(url)
img = Image.open(BytesIO(response.content))
img = img.resize((224, 224))
numpy_img = img_to_array(img)
img_batch = np.expand_dims(numpy_img, axis=0)
images.append(img_batch.astype('float16'))
images = np.vstack(images)
从下面的示例中您可以看到,在我们的数据中显示了不同类型的墙体裂缝,其中一些对我来说也不容易识别。
图例
02. 机器学习模型
我们想要建立一个机器学习模型,该模型能够对墙壁图像进行分类并同时检测异常的位置。为了达到这个目的需要建立一个有效的分类器。它将能够读取输入图像并将其分类为“损坏”或“未损坏”两个部分。在最后一步,我们将利用分类器学到的知识来提取有用的信息,这将有助于我们检测异常情况。对于这个类任务,我们选择在Keras中重载VGG16来完成它。
代码语言:javascript复制vgg_conv = vgg16.VGG16(weights='imagenet', include_top=False, input_shape = (224, 224, 3))
for layer in vgg_conv.layers[:-8]:
layer.trainable = False
导入了VGG架构,并允许训练最后两个卷积模块,以便我们的模型能够具有一定的特殊性。除此之外,我们还需要去除原始模型的顶层,并将其替换为另一种结构。
代码语言:javascript复制x = vgg_conv.output
x = GlobalAveragePooling2D()(x)
x = Dense(2, activation="softmax")(x)
model = Model(vgg_conv.input, x)
model.compile(loss = "categorical_crossentropy", optimizer = optimizers.SGD(lr=0.0001, momentum=0.9), metrics=["accuracy"])
在分类阶段,GlobalAveragePooling层通过提取每个要素图的平均值来减小前一层的大小,这种选择加上中间致密层的省略用法可以避免过度拟合。如果小伙伴可以使用GPU,则培训非常简单。COLAB为我们提供了加快这一过程所需的武器。我们还使用了Keras提供的简单数据生成器进行图像增强。
最终,我们能够达到0.90的整体精度,还不错!
局部异常
现在我们要对检测出异常的图像进行一定的操作,使墙壁图像裂缝被突出。我们需要的有用信息位于顶层。因此我们可以访问:卷积层:上层是VGG结构,还有网络创建的更多重要功能。我们选择了最后一个卷积层(“ block5_conv3 ”),并在此处剪切了我们的分类模型。我们已经重新创建了一个中间模型,该模型以原始图像为输入,输出相关的激活图。考虑到维度,我们的中间模型增加了初始图像的通道(新功能)并减小了尺寸(高度和宽度)。
最终密度层:对于每个感兴趣的类别,我们都需要这些权重,这些权重负责提供分类的最终结果。
有了这些压缩的物体,我们掌握了定位裂缝的所有知识。我们希望将它们“绘制”在原始图像上,以使结果易于理解且易于看清。“解压缩”此信息在python中很容易:我们只需进行双线性上采样即可调整每个激活图的大小并计算点积。
执行一个简单的函数即可访问:
代码语言:javascript复制def plot_activation(img):
pred = model.predict(img[np.newaxis,:,:,:])
pred_class = np.argmax(pred)
weights = model.layers[-1].get_weights()[0]
class_weights = weights[:, pred_class]
intermediate = Model(model.input,
model.get_layer("block5_conv3").output)
conv_output = intermediate.predict(img[np.newaxis,:,:,:])
conv_output = np.squeeze(conv_output)
h = int(img.shape[0]/conv_output.shape[0])
w = int(img.shape[1]/conv_output.shape[1])
act_maps = sp.ndimage.zoom(conv_output, (h, w, 1), order=1)
out = np.dot(act_maps.reshape((img.shape[0]*img.shape[1],512)),
class_weights).reshape(img.shape[0],img.shape[1])
plt.imshow(img.astype('float32').reshape(img.shape[0],
img.shape[1],3))
plt.imshow(out, cmap='jet', alpha=0.35)
plt.title('Crack' if pred_class == 1 else 'No Crack')
我在下面的图像中显示结果,在该图像中,我已在分类为裂纹的测试图像上绘制了裂纹热图。我们可以看到,热图能够很好地泛化并指出包含裂缝的墙块。
在裂纹图像中显示异常
03. 总结
在这篇文章中,我们为异常识别和定位提供了一种机器学习解决方案。所有这些功能都可以通过实现单个分类模型来访问。在训练过程中,我们的神经网络会获取所有相关信息,从而可以进行分类,并在最后给出墙壁裂纹的信息。