【数据结构与算法】Dynamic-Programming

2024-10-09 14:12:14 浏览数 (4)

4.3 Dynamic-Programming

1) Fibonacci
代码语言:javascript复制
public class Fibonacci {
    public static void main(String[] args) {
        System.out.println(fibonacci(13));
    }

    public static int fibonacci(int n) {
        int[] dp = new int[n   1];
        dp[0] = 0;
        dp[1] = 1;
        if (n < 2) {
            return dp[n];
        }
        for (int i = 2; i <= n; i  ) {
            dp[i] = dp[i - 2]   dp[i - 1];
        }
        return dp[n];
    }
}
降维
代码语言:javascript复制
public class Fibonacci {
    public static void main(String[] args) {
        System.out.println(fibonacci(13));
    }

    public static int fibonacci(int n) {        
        if (n == 0) {
            return 0;
        }
        if (n == 1) {
            return 1;
        }
        int a = 0;
        int b = 1;
        for (int i = 2; i <= n; i  ) {
            int c = b   a;
            a = b;
            b = c;
        }
        return b;
    }
}
2) 最短路径 - Bellman-Ford
代码语言:javascript复制
public class BellmanFord {
    static class Edge {
        int from;
        int to;
        int weight;

        public Edge(int from, int to, int weight) {
            this.from = from;
            this.to = to;
            this.weight = weight;
        }
    }

    /*
            f(v) 用来表示从起点出发,到达 v 这个顶点的最短距离
            初始时
            f(v) = 0   当 v==起点 时
            f(v) = ∞   当 v!=起点 时

            之后
            新           旧     所有from
            f(to) = min(f(to), f(from)   from.weight)

            from 从哪来
            to   到哪去

            f(v4) = min( ∞, f(v3)   11 ) = 20
            f(v4) = min( 20, f(v2)   15 ) = 20


            v1  v2  v3  v4  v5  v6
            0   ∞   ∞   ∞   ∞   ∞
            0   7   9   ∞   ∞   14  第一轮
            0   7   9   20  23  11  第二轮
            0   7   9   20  20  11  第三轮
            0   7   9   20  20  11  第四轮
            0   7   9   20  20  11  第五轮

     */

    public static void main(String[] args) {
        List<Edge> edges = List.of(
                new Edge(6, 5, 9),
                new Edge(4, 5, 6),
                new Edge(1, 6, 14),
                new Edge(3, 6, 2),
                new Edge(3, 4, 11),
                new Edge(2, 4, 15),
                new Edge(1, 3, 9),
                new Edge(1, 2, 7)
        );
        int[] dp = new int[7]; // 一维数组用来缓存结果
        dp[1] = 0;
        for (int i = 2; i < dp.length; i  ) {
            dp[i] = Integer.MAX_VALUE;
        }
        print(dp);
        for (int i = 0; i < 5; i  ) {
            for (Edge e : edges) {
                if(dp[e.from] != Integer.MAX_VALUE) {
                    dp[e.to] = Integer.min(dp[e.to], dp[e.from]   e.weight);
                }
            }
        }
        print(dp);
    }

    static void print(int[] dp) {
        System.out.println(Arrays.stream(dp)
                .mapToObj(i -> i == Integer.MAX_VALUE ? "∞" : String.valueOf(i))
                .collect(Collectors.joining(",", "[", "]")));
    }
}
3) 不同路径-Leetcode 62

机器人要从左上角走到右下角,每次只能向右向下,问一共有多少条不同路径?

分析,先考虑较为简单的情况

可能路径有三种情况: