有限元类型

2018-04-08 16:45:23 浏览数 (1)

从变分原理角度来看,按照所选取的独立自变函数的类型,可以分为如下几种类型: 1 协调类型 以位移作为独立自变函数,使用的变分原理是最小势能原理。作为独立自变函数的位移首先要满足几何方程,位移边界条件以及单元间的连续性条件,故这种单元称为位移协调元。若位移函数不完全满足单元间的连续性,此类单元称为非完全协调元。 2 平衡类型 以应力作为独立自变函数,使用的变分原理是最小余能原理。作为独立函数的应力首先要满足平衡方程,应力边界条件以及单元间的应力平衡条件,故这种单元称为平衡单元。 3 混合类型 以位移,应力作为独立自变函数,使用的变分原理是广义变分原理,如两类变量的赫林格-赖斯纳(Hellinger-Reissner)广义变分原理,这种单元称为混合单元。 4 杂交类型 在每个单元内构造满足平衡条件的应力场函数,并且沿单元间满足协调条件的位移函数,使用变分原理是修正的余能原理,这种单元称为杂交单元(Hybrid Element) 5 杂交混合类型 以单元内的位移,应力作为自变函数,并且沿单元间边界构造独立的位移函数,使用修正的赫林格-赖斯纳变分原理建立的这种单元称为杂交混合单元。

基于最小势能原理的协调单元,位移是自变函数,而其他物理量如应力是由位移场经过微分求得,因此,协调元的精度较差。基于最小余能原理的平衡单元,由于构造的应力场既要在单元内部满足平衡条件,又要在单元间满足力的连续条件,这是相当困难的,因而平衡模型在实践中较少使用。混合单元的刚度矩阵存在主对角元素为0的问题,求解上存在困难。当在变分原理中放松了应力边界条件和单元之间的应力平衡条件时,可以得到修正的余能原理,在此基础上可以建立杂交应力的有限元模型。这种单元的单元内部应力场和单元间边界边界的位移独立构造,可以方便地得到结构位移,并且单元应力精度也较高。

0 人点赞