Problem Description Ignatius is poor at math,he falls across a puzzle problem,so he has no choice but to appeal to Eddy. this problem describes that:f(x)=5*x^13 13*x^5 k*a*x,input a nonegative integer k(k<10000),to find the minimal nonegative integer a,make the arbitrary integer x ,65|f(x)if no exists that a,then print “no”.
Input The input contains several test cases. Each test case consists of a nonegative integer k, More details in the Sample Input.
Output The output contains a string “no”,if you can’t find a,or you should output a line contains the a.More details in the Sample Output.
Sample Input 11 100 9999
Sample Output 22 no 43
题目大意:方程f(x)=5*x^13 13*x^5 k*a*x;输入任意一个数k,是否存在一个数a,对任意x都能使得f(x)能被65整除。 现假设存在这个数a ,因为对于任意x方程都成立 所以,当x=1时f(x)=18 ka 又因为f(x)能被65整出,故设n为整数 可得,f(x)=n*65; 即:18 ka=n*65; 因为n为整数,若要方程成立 则问题转化为, 对于给定范围的a只需要验证, 是否存在一个a使得(18 k*a)e==0 所以容易解得 注意,这里有童鞋不理解为什么a只需到65即可 因为,当a==66时 也就相当于已经找了一个周期了,所以再找下去也找不到适当的a了
代码语言:javascript复制import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
while(sc.hasNext()){
int k= sc.nextInt();
boolean flag=false;
for(int a=0;a<=65;a ){
if((18 k*a)e==0){
System.out.println(a);
flag = true;
break;
}
}
if(!flag){
System.out.println("no");
}
}
}
}