国产芯片WiFi物联网智能插座—电耗采集功能设计

2021-01-25 10:13:08 浏览数 (1)

WiFi物联网智能插座的电耗采集依托于合力为的HLW8110计量芯片实现,选取它的主要原因是精度不错,价格美丽,并且可以通过串口驱动,使用便捷。

1、硬件设计

HLW8110是一款高精度的电能计量 IC,它采用 CMOS 制造工艺,主要用于单相计量应用。它能够测量线电压和电流,并能计算有功功率,视在功率和功率因素。该器件内部集成了二个∑-Δ型 ADC 和一个高精度的电能计量内核。输入通道支持灵活的 PGA 设置,因此 HLW8110 适合与不同类型的传感器使用,如电流互感器(CT)和低阻值分流器。

HLW8110 电能计量 IC 采用 3.3V 或 5.0V 电源供电,内置 3.579M 振荡器,可以通过 UART 口进行数据通讯,波特率为 9600bps。

HLW8110的典型电路,外围电路简单,外围器件非常少,单路通道可用于检测负载设备的功率、电压、电流和用电量,通过 UART 或接口传输数据至 MCU,HLW8110 内部可以设置功率过载、电压过载和电流过载阀值,通过内部寄存器可以查询,并可以检测电压过零点。

官方测试,使用采样电阻或者互感器的理论数据误差如下所示:

在使用之前先简单设计一块Demo板进行调测,实物模块如下所示:

原理图、PCB如下所示:

2、软件设计

由于代码量较多,部分配置代码不再赘述,仅仅展示核心算法代码。

读取通道电流,实现代码如下所示:

代码语言:javascript复制
void Read_HLW8110_IA(void)
{	
	float a;
	
	Uart_Read_HLW8110_Reg(REG_RMSIA_ADDR,3);
		delay_ms(10);
	if ( u8_RxBuf[u8_RX_Length-1] == HLW8110_checkSum_Read(u8_RX_Length) )
	{
		U32_RMSIA_RegData = (unsigned long)(u8_RxBuf[0]<<16)   (unsigned long)(u8_RxBuf[1]<<8)   (unsigned long)(u8_RxBuf[2]); 
		printf("A通道电流寄存器:%lxn " ,U32_RMSIA_RegData);
	}
	else
	{
		printf("A通道电流寄存器读取出错rn");
		B_Read_Error = 1;
	}
	
	
	//A通道电流PGA = 16,电压通道PGA = 1;电流采样电阻1mR,电压采样电阻1M
  //计算公式,U16_AC_I = (U32_RMSIA_RegData * U16_RMSIAC_RegData)/(电流系数* 2^23)
	if ((U32_RMSIA_RegData & 0x800000) == 0x800000)
	 {
			F_AC_I = 0;
	 }
	 else
	 {
		a = (float)U32_RMSIA_RegData;
		a = a * U16_RMSIAC_RegData;
		a  = a/0x800000;                     //电流计算出来的浮点数单位是mA,比如5003.12 
		a = a/1;  								// 1 = 电流系数
		a = a/1000;              //a= 5003ma,a/1000 = 5.003A,单位转换成A
		a = a * D_CAL_A_I;				//D_CAL_A_I是校正系数,默认是1
		F_AC_I = a;
	 }
}

读取通道电压,实现代码如下所示:

代码语言:javascript复制
void Read_HLW8110_U(void)
{
	float a;
	
	Uart_Read_HLW8110_Reg(REG_RMSU_ADDR,3);
		delay_ms(10);
	if ( u8_RxBuf[u8_RX_Length-1] == HLW8110_checkSum_Read(u8_RX_Length) )
	{
		U32_RMSU_RegData = (unsigned long)(u8_RxBuf[0]<<16)   (unsigned long)(u8_RxBuf[1]<<8)   (unsigned long)(u8_RxBuf[2]);
		printf("电压通道寄存器:%lxn " ,U32_RMSU_RegData);
	}
	else
	{
		printf("电压通道寄存器读取出错rn");
		B_Read_Error = 1;
	}
	
		//电压
	//计算:U16_AC_V = (U32_RMSU_RegData * U16_RMSUC_RegData)/2^23
	
	 if ((U32_RMSU_RegData &0x800000) == 0x800000)
	 {
			F_AC_V = 0;
	 }
  else
	{
  a =  (float)U32_RMSU_RegData;
  a = a*U16_RMSUC_RegData;  
  a = a/0x400000;       
  a = a/1;  						// 1 = 电压系数
  a = a/100;    				//计算出a = 22083.12mV,a/100表示220.8312V,电压转换成V
  a = a*D_CAL_U;				//D_CAL_U是校正系数,默认是1,		
  F_AC_V = a;
	}
}

读取通道功率,实现代码如下所示:

代码语言:javascript复制
void Read_HLW8110_PA(void)
{
	float a;
	float b;
	
	Uart_Read_HLW8110_Reg(REG_POWER_PA_ADDR,4);
		delay_ms(10);
	if ( u8_RxBuf[u8_RX_Length-1] == HLW8110_checkSum_Read(u8_RX_Length) )
	{
		U32_POWERPA_RegData = (unsigned long)(u8_RxBuf[0]<<24)   (unsigned long)(u8_RxBuf[1]<<16)   (unsigned long)(u8_RxBuf[2]<<8)   (unsigned long)(u8_RxBuf[3]);
		printf("A通道功率寄存器:%lxn " ,U32_POWERPA_RegData);
	}
	else
	{
		printf("A通道功率寄存器读取出错rn");
		B_Read_Error = 1;
	}
	
	
	 if (U32_POWERPA_RegData > 0x80000000)
   {
     b = ~U32_POWERPA_RegData;
     a = (float)b;
   }
   else
     a =  (float)U32_POWERPA_RegData;
     
   
	//功率需要分正功和负功
  //计算,U16_AC_P = (U32_POWERPA_RegData * U16_PowerPAC_RegData)/(2^31*电压系数*电流系数)
	//单位为W,比如算出来5000.123,表示5000.123W
	
    a = a*U16_PowerPAC_RegData;
    a = a/0x80000000;             
    a = a/1;  										// 1 = 电流系数
    a = a/1;  										// 1 = 电压系数
    a = a * D_CAL_A_P;						//D_CAL_A_P是校正系数,默认是1
    F_AC_P = a;									//单位为W,比如算出来5000.123,表示5000.123W
}

读取通道有功电量,实现代码如下所示:

代码语言:javascript复制
void Read_HLW8110_EA(void)
{
	float a;
	Uart_Read_HLW8110_Reg(REG_ENERGY_PA_ADDR,3); 
	delay_ms(10);
	
	if ( u8_RxBuf[u8_RX_Length-1] == HLW8110_checkSum_Read(u8_RX_Length) )
	{
		U32_ENERGY_PA_RegData = (unsigned long)(u8_RxBuf[0]<<16)   (unsigned long)(u8_RxBuf[1]<<8)   (unsigned long)(u8_RxBuf[2]);
		printf("A通道有功电量寄存器:%lxn " ,U32_ENERGY_PA_RegData);
	}
	else
	{
		printf("A通道有功电量寄存器读取出错rn");
		B_Read_Error = 1;
	}
	
	Uart_Read_HLW8110_Reg(REG_HFCONST_ADDR,2); 
	delay_ms(10);
	if ( u8_RxBuf[u8_RX_Length-1] == HLW8110_checkSum_Read(u8_RX_Length) )
	{
		U16_HFConst_RegData = (unsigned int)(u8_RxBuf[0]<<8)   (unsigned int)(u8_RxBuf[1]);
		printf("HFCONST常数 = :%dn " ,U16_HFConst_RegData);
	}
	else
	{
		printf("HFCONST常数寄存器读取出错rn");
		B_Read_Error = 1;
	}

	//电量计算,电量 = (U32_ENERGY_PA_RegData * U16_EnergyAC_RegData * HFCONST) /(K1*K2 * 2^29 * 4096)
	//HFCONST:默认值是0x1000, HFCONST/(2^29 * 4096) = 0x20000000
	a =  (float)U32_ENERGY_PA_RegData;	
  a = a*U16_EnergyAC_RegData;
  a = a/0x20000000;             //电量单位是0.001KWH,比如算出来是2.002,表示2.002KWH    
   a = a/1;  										// 1 = 电流系数
   a = a/1;  										// 1 = 电压系数
   a = a * D_CAL_A_E;     			//D_CAL_A_E是校正系数,默认是1
  F_AC_E = a;
	F_AC_BACKUP_E = F_AC_E;	
}

读取通道的线性频率,实现代码如下所示:

代码语言:javascript复制
void Read_HLW8110_LineFreq(void)
{
	float a;
	unsigned long b;
	Uart_Read_HLW8110_Reg(REG_UFREQ_ADDR,2);
	delay_ms(10);
	if ( u8_RxBuf[u8_RX_Length-1] == HLW8110_checkSum_Read(u8_RX_Length) )
	{
		b = (unsigned long)(u8_RxBuf[0]<<8)   (unsigned long)(u8_RxBuf[1]);
		printf("A通道线性频率寄存器:%ldn " ,b);
	}
	else
	{
		printf("A通道线性频率寄存器读取出错rn");
		B_Read_Error = 1;
	}
	a = (float)b;
	a = 3579545/(8*a);    
	F_AC_LINE_Freq = a;
}

读取通道功率因素,实现代码如下所示:

代码语言:javascript复制
void Read_HLW8110_PF(void)
{
  float a;
  unsigned long b;
	
//测量A通道的功率因素,需要发送EA 5A命令
//测量B通道的功率因素,需要发送EA A5命令	
	
	Uart_Read_HLW8110_Reg(REG_PF_ADDR,3);
	delay_ms(10);
	if ( u8_RxBuf[u8_RX_Length-1] == HLW8110_checkSum_Read(u8_RX_Length) )
	{
		b = (unsigned long)(u8_RxBuf[0]<<16)   (unsigned long)(u8_RxBuf[1]<<8)   (unsigned long)(u8_RxBuf[2]);
		printf("A通道功率因素寄存器:%ldn " ,b);
	}
	else
	{
		printf("读取A通道功率因素寄存器出错rn");
		B_Read_Error = 1;
	}

  if (b>0x800000)       //为负,容性负载
  {
      a = (float)(0xffffff-b   1)/0x7fffff;
  }
  else
  {
      a = (float)b/0x7fffff;
  }
  
  if (F_AC_P < 0.3) // 小于0.3W,空载或小功率,PF不准
	  a = 0; 

//功率因素*100,最大为100,最小负100
  F_AC_PF = a;
}

读取通道相位角,实现代码如下所示:

代码语言:javascript复制
void Read_HLW8110_Angle(void)
{
	float a;	
	unsigned long b;
	Uart_Read_HLW8110_Reg(REG_ANGLE_ADDR,2);
	delay_ms(10);
	if ( u8_RxBuf[u8_RX_Length-1] == HLW8110_checkSum_Read(u8_RX_Length) )
	{
		b =(unsigned long)(u8_RxBuf[0]<<8)   (unsigned long)(u8_RxBuf[1]);
		printf("A通道线相角寄存器:%ldn " ,b);
	}
	else
	{
		printf("A通道线相角寄存器出错rn");
		B_Read_Error = 1;
	}
	
	if ( F_AC_PF < 55)	//线性频率50HZ
	{
		a = b;
		a = a * 0.0805;
		F_Angle = a;
	}
	else
	{
		//线性频率60HZ
		a = b;
		a = a * 0.0965;
		F_Angle = a;
	}
	
	
		if (F_AC_P < 0.5)		//功率小于0.5时,说明没有负载,相角为0
	{
		F_Angle = 0;
	}
	
	if (F_Angle < 90)
	{
		a = F_Angle;
		printf("电流超前电压:%fn " ,a);
	}
	else if (F_Angle < 180)
	{
		a = 180-F_Angle;
		printf("电流滞后电压:%fn " ,a);	
	}
	else if (F_Angle < 360)
	{
		a = 360 - F_Angle;
		printf("电流滞后电压:%fn " ,a);	
	}
	else
	{
			a = F_Angle -360;
			printf("电流超前电压:%fn " ,a);	
	}
}

0 人点赞