WiFi物联网智能插座的电耗采集依托于合力为的HLW8110计量芯片实现,选取它的主要原因是精度不错,价格美丽,并且可以通过串口驱动,使用便捷。
1、硬件设计
HLW8110是一款高精度的电能计量 IC,它采用 CMOS 制造工艺,主要用于单相计量应用。它能够测量线电压和电流,并能计算有功功率,视在功率和功率因素。该器件内部集成了二个∑-Δ型 ADC 和一个高精度的电能计量内核。输入通道支持灵活的 PGA 设置,因此 HLW8110 适合与不同类型的传感器使用,如电流互感器(CT)和低阻值分流器。
HLW8110 电能计量 IC 采用 3.3V 或 5.0V 电源供电,内置 3.579M 振荡器,可以通过 UART 口进行数据通讯,波特率为 9600bps。
HLW8110的典型电路,外围电路简单,外围器件非常少,单路通道可用于检测负载设备的功率、电压、电流和用电量,通过 UART 或接口传输数据至 MCU,HLW8110 内部可以设置功率过载、电压过载和电流过载阀值,通过内部寄存器可以查询,并可以检测电压过零点。
官方测试,使用采样电阻或者互感器的理论数据误差如下所示:
在使用之前先简单设计一块Demo板进行调测,实物模块如下所示:
原理图、PCB如下所示:
2、软件设计
由于代码量较多,部分配置代码不再赘述,仅仅展示核心算法代码。
读取通道电流,实现代码如下所示:
代码语言:javascript复制void Read_HLW8110_IA(void)
{
float a;
Uart_Read_HLW8110_Reg(REG_RMSIA_ADDR,3);
delay_ms(10);
if ( u8_RxBuf[u8_RX_Length-1] == HLW8110_checkSum_Read(u8_RX_Length) )
{
U32_RMSIA_RegData = (unsigned long)(u8_RxBuf[0]<<16) (unsigned long)(u8_RxBuf[1]<<8) (unsigned long)(u8_RxBuf[2]);
printf("A通道电流寄存器:%lxn " ,U32_RMSIA_RegData);
}
else
{
printf("A通道电流寄存器读取出错rn");
B_Read_Error = 1;
}
//A通道电流PGA = 16,电压通道PGA = 1;电流采样电阻1mR,电压采样电阻1M
//计算公式,U16_AC_I = (U32_RMSIA_RegData * U16_RMSIAC_RegData)/(电流系数* 2^23)
if ((U32_RMSIA_RegData & 0x800000) == 0x800000)
{
F_AC_I = 0;
}
else
{
a = (float)U32_RMSIA_RegData;
a = a * U16_RMSIAC_RegData;
a = a/0x800000; //电流计算出来的浮点数单位是mA,比如5003.12
a = a/1; // 1 = 电流系数
a = a/1000; //a= 5003ma,a/1000 = 5.003A,单位转换成A
a = a * D_CAL_A_I; //D_CAL_A_I是校正系数,默认是1
F_AC_I = a;
}
}
读取通道电压,实现代码如下所示:
代码语言:javascript复制void Read_HLW8110_U(void)
{
float a;
Uart_Read_HLW8110_Reg(REG_RMSU_ADDR,3);
delay_ms(10);
if ( u8_RxBuf[u8_RX_Length-1] == HLW8110_checkSum_Read(u8_RX_Length) )
{
U32_RMSU_RegData = (unsigned long)(u8_RxBuf[0]<<16) (unsigned long)(u8_RxBuf[1]<<8) (unsigned long)(u8_RxBuf[2]);
printf("电压通道寄存器:%lxn " ,U32_RMSU_RegData);
}
else
{
printf("电压通道寄存器读取出错rn");
B_Read_Error = 1;
}
//电压
//计算:U16_AC_V = (U32_RMSU_RegData * U16_RMSUC_RegData)/2^23
if ((U32_RMSU_RegData &0x800000) == 0x800000)
{
F_AC_V = 0;
}
else
{
a = (float)U32_RMSU_RegData;
a = a*U16_RMSUC_RegData;
a = a/0x400000;
a = a/1; // 1 = 电压系数
a = a/100; //计算出a = 22083.12mV,a/100表示220.8312V,电压转换成V
a = a*D_CAL_U; //D_CAL_U是校正系数,默认是1,
F_AC_V = a;
}
}
读取通道功率,实现代码如下所示:
代码语言:javascript复制void Read_HLW8110_PA(void)
{
float a;
float b;
Uart_Read_HLW8110_Reg(REG_POWER_PA_ADDR,4);
delay_ms(10);
if ( u8_RxBuf[u8_RX_Length-1] == HLW8110_checkSum_Read(u8_RX_Length) )
{
U32_POWERPA_RegData = (unsigned long)(u8_RxBuf[0]<<24) (unsigned long)(u8_RxBuf[1]<<16) (unsigned long)(u8_RxBuf[2]<<8) (unsigned long)(u8_RxBuf[3]);
printf("A通道功率寄存器:%lxn " ,U32_POWERPA_RegData);
}
else
{
printf("A通道功率寄存器读取出错rn");
B_Read_Error = 1;
}
if (U32_POWERPA_RegData > 0x80000000)
{
b = ~U32_POWERPA_RegData;
a = (float)b;
}
else
a = (float)U32_POWERPA_RegData;
//功率需要分正功和负功
//计算,U16_AC_P = (U32_POWERPA_RegData * U16_PowerPAC_RegData)/(2^31*电压系数*电流系数)
//单位为W,比如算出来5000.123,表示5000.123W
a = a*U16_PowerPAC_RegData;
a = a/0x80000000;
a = a/1; // 1 = 电流系数
a = a/1; // 1 = 电压系数
a = a * D_CAL_A_P; //D_CAL_A_P是校正系数,默认是1
F_AC_P = a; //单位为W,比如算出来5000.123,表示5000.123W
}
读取通道有功电量,实现代码如下所示:
代码语言:javascript复制void Read_HLW8110_EA(void)
{
float a;
Uart_Read_HLW8110_Reg(REG_ENERGY_PA_ADDR,3);
delay_ms(10);
if ( u8_RxBuf[u8_RX_Length-1] == HLW8110_checkSum_Read(u8_RX_Length) )
{
U32_ENERGY_PA_RegData = (unsigned long)(u8_RxBuf[0]<<16) (unsigned long)(u8_RxBuf[1]<<8) (unsigned long)(u8_RxBuf[2]);
printf("A通道有功电量寄存器:%lxn " ,U32_ENERGY_PA_RegData);
}
else
{
printf("A通道有功电量寄存器读取出错rn");
B_Read_Error = 1;
}
Uart_Read_HLW8110_Reg(REG_HFCONST_ADDR,2);
delay_ms(10);
if ( u8_RxBuf[u8_RX_Length-1] == HLW8110_checkSum_Read(u8_RX_Length) )
{
U16_HFConst_RegData = (unsigned int)(u8_RxBuf[0]<<8) (unsigned int)(u8_RxBuf[1]);
printf("HFCONST常数 = :%dn " ,U16_HFConst_RegData);
}
else
{
printf("HFCONST常数寄存器读取出错rn");
B_Read_Error = 1;
}
//电量计算,电量 = (U32_ENERGY_PA_RegData * U16_EnergyAC_RegData * HFCONST) /(K1*K2 * 2^29 * 4096)
//HFCONST:默认值是0x1000, HFCONST/(2^29 * 4096) = 0x20000000
a = (float)U32_ENERGY_PA_RegData;
a = a*U16_EnergyAC_RegData;
a = a/0x20000000; //电量单位是0.001KWH,比如算出来是2.002,表示2.002KWH
a = a/1; // 1 = 电流系数
a = a/1; // 1 = 电压系数
a = a * D_CAL_A_E; //D_CAL_A_E是校正系数,默认是1
F_AC_E = a;
F_AC_BACKUP_E = F_AC_E;
}
读取通道的线性频率,实现代码如下所示:
代码语言:javascript复制void Read_HLW8110_LineFreq(void)
{
float a;
unsigned long b;
Uart_Read_HLW8110_Reg(REG_UFREQ_ADDR,2);
delay_ms(10);
if ( u8_RxBuf[u8_RX_Length-1] == HLW8110_checkSum_Read(u8_RX_Length) )
{
b = (unsigned long)(u8_RxBuf[0]<<8) (unsigned long)(u8_RxBuf[1]);
printf("A通道线性频率寄存器:%ldn " ,b);
}
else
{
printf("A通道线性频率寄存器读取出错rn");
B_Read_Error = 1;
}
a = (float)b;
a = 3579545/(8*a);
F_AC_LINE_Freq = a;
}
读取通道功率因素,实现代码如下所示:
代码语言:javascript复制void Read_HLW8110_PF(void)
{
float a;
unsigned long b;
//测量A通道的功率因素,需要发送EA 5A命令
//测量B通道的功率因素,需要发送EA A5命令
Uart_Read_HLW8110_Reg(REG_PF_ADDR,3);
delay_ms(10);
if ( u8_RxBuf[u8_RX_Length-1] == HLW8110_checkSum_Read(u8_RX_Length) )
{
b = (unsigned long)(u8_RxBuf[0]<<16) (unsigned long)(u8_RxBuf[1]<<8) (unsigned long)(u8_RxBuf[2]);
printf("A通道功率因素寄存器:%ldn " ,b);
}
else
{
printf("读取A通道功率因素寄存器出错rn");
B_Read_Error = 1;
}
if (b>0x800000) //为负,容性负载
{
a = (float)(0xffffff-b 1)/0x7fffff;
}
else
{
a = (float)b/0x7fffff;
}
if (F_AC_P < 0.3) // 小于0.3W,空载或小功率,PF不准
a = 0;
//功率因素*100,最大为100,最小负100
F_AC_PF = a;
}
读取通道相位角,实现代码如下所示:
代码语言:javascript复制void Read_HLW8110_Angle(void)
{
float a;
unsigned long b;
Uart_Read_HLW8110_Reg(REG_ANGLE_ADDR,2);
delay_ms(10);
if ( u8_RxBuf[u8_RX_Length-1] == HLW8110_checkSum_Read(u8_RX_Length) )
{
b =(unsigned long)(u8_RxBuf[0]<<8) (unsigned long)(u8_RxBuf[1]);
printf("A通道线相角寄存器:%ldn " ,b);
}
else
{
printf("A通道线相角寄存器出错rn");
B_Read_Error = 1;
}
if ( F_AC_PF < 55) //线性频率50HZ
{
a = b;
a = a * 0.0805;
F_Angle = a;
}
else
{
//线性频率60HZ
a = b;
a = a * 0.0965;
F_Angle = a;
}
if (F_AC_P < 0.5) //功率小于0.5时,说明没有负载,相角为0
{
F_Angle = 0;
}
if (F_Angle < 90)
{
a = F_Angle;
printf("电流超前电压:%fn " ,a);
}
else if (F_Angle < 180)
{
a = 180-F_Angle;
printf("电流滞后电压:%fn " ,a);
}
else if (F_Angle < 360)
{
a = 360 - F_Angle;
printf("电流滞后电压:%fn " ,a);
}
else
{
a = F_Angle -360;
printf("电流超前电压:%fn " ,a);
}
}