Elasticsearch使用:Aggregation API

2021-01-26 10:18:16 浏览数 (1)

简介

聚合框架有助于基于搜索查询提供聚合数据。它基于称为聚合的简单构建块,可以组合以构建复杂的数据摘要。

Aggregation

代码语言:javascript复制
DELETE twitte
 
PUT twitte
{
  "mappings": {
    "properties": {
      "DOB": {
        "type": "date"
      },
      "address": {
        "type": "text",
        "fields": {
          "keyword": {
            "type": "keyword",
            "ignore_above": 256
          }
        }
      },
      "age": {
        "type": "long"
      },
      "city": {
        "type": "keyword"
      },
      "country": {
        "type": "keyword"
      },
      "location": {
        "type": "geo_point"
      },
      "message": {
        "type": "text",
        "fields": {
          "keyword": {
            "type": "keyword",
            "ignore_above": 256
          }
        }
      },
      "province": {
        "type": "keyword"
      },
      "uid": {
        "type": "long"
      },
      "user": {
        "type": "text",
        "fields": {
          "keyword": {
            "type": "keyword",
            "ignore_above": 256
          }
        }
      }
    }
  }
}

使用 bulk API 来把我们的数据导入到 Elasticsearch 中:

代码语言:javascript复制
POST _bulk
{"index":{"_index":"twitter","_id":1}}
{"user":"张三","message":"今儿天气不错啊,出去转转去","uid":2,"age":20,"city":"北京","province":"北京","country":"中国","address":"中国北京市海淀区","location":{"lat":"39.970718","lon":"116.325747"}, "DOB": "1999-04-01"}
{"index":{"_index":"twitter","_id":2}}
{"user":"老刘","message":"出发,下一站云南!","uid":3,"age":22,"city":"北京","province":"北京","country":"中国","address":"中国北京市东城区台基厂三条3号","location":{"lat":"39.904313","lon":"116.412754"}, "DOB": "1997-04-01"}
{"index":{"_index":"twitter","_id":3}}
{"user":"李四","message":"happy birthday!","uid":4,"age":25,"city":"北京","province":"北京","country":"中国","address":"中国北京市东城区","location":{"lat":"39.893801","lon":"116.408986"}, "DOB": "1994-04-01"}
{"index":{"_index":"twitter","_id":4}}
{"user":"老贾","message":"123,gogogo","uid":5,"age":30,"city":"北京","province":"北京","country":"中国","address":"中国北京市朝阳区建国门","location":{"lat":"39.718256","lon":"116.367910"}, "DOB": "1989-04-01"}
{"index":{"_index":"twitter","_id":5}}
{"user":"老王","message":"Happy BirthDay My Friend!","uid":6,"age":26,"city":"北京","province":"北京","country":"中国","address":"中国北京市朝阳区国贸","location":{"lat":"39.918256","lon":"116.467910"}, "DOB": "1993-04-01"}
{"index":{"_index":"twitter","_id":6}}
{"user":"老吴","message":"好友来了都今天我生日,好友来了,什么 birthday happy 就成!","uid":7,"age":28,"city":"上海","province":"上海","country":"中国","address":"中国上海市闵行区","location":{"lat":"31.175927","lon":"121.383328"}, "DOB": "1991-04-01"}

简单地说,聚合的语法是这样的:

代码语言:javascript复制
"aggregations" : {
    "<aggregation_name>" : {
        "<aggregation_type>" : {
            <aggregation_body>
        }
        [,"meta" : {  [<meta_data_body>] } ]?
        [,"aggregations" : { [<sub_aggregation>]  } ]?
    }
    [,"<aggregation_name_2>" : { ... } ]*
}

通常,我们也可以使用 aggs 来代替上面的 “aggregations” 。

range聚合

我们可以把用户进行年龄分段,查出来在不同的年龄段的用户:

代码语言:javascript复制
GET twitter/_search
{
  "size": 0,
  "aggs": {
    "age": {
      "range": {
        "field": "age",
        "ranges": [
          {
            "from": 20,
            "to": 30
          },
          {
            "from": 30,
            "to": 40
          },
          {
            "from": 40,
            "to": 50
          }
        ]
      }
    }
  }
}

结果:
{
  "took" : 681,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 6,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "age" : {
      "buckets" : [
        {
          "key" : "20.0-30.0",
          "from" : 20.0,
          "to" : 30.0,
          "doc_count" : 5
        },
        {
          "key" : "30.0-40.0",
          "from" : 30.0,
          "to" : 40.0,
          "doc_count" : 1
        },
        {
          "key" : "40.0-50.0",
          "from" : 40.0,
          "to" : 50.0,
          "doc_count" : 0
        }
      ]
    }
  }
}

在上面,我们也注意到,我们把 size 设置为 0。这是因为针对聚合,我们并不关心返回的结果。

date_range聚合

我们可以使用 date_range 来统计在某个时间段里的文档数:

代码语言:javascript复制
POST twitter/_search
{
  "size": 0,
  "aggs": {
    "birth_range": {
      "date_range": {
        "field": "DOB",
        "format": "yyyy-MM-dd",
        "ranges": [
          {
            "from": "1989-01-01",
            "to": "1990-01-01"
          },
          {
            "from": "1991-01-01",
            "to": "1992-01-01"
          }
        ]
      }
    }
  }
}

结果:
{
  "took" : 2,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 6,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "birth_range" : {
      "buckets" : [
        {
          "key" : "1989-01-01-1990-01-01",
          "from" : 5.99616E11,
          "from_as_string" : "1989-01-01",
          "to" : 6.31152E11,
          "to_as_string" : "1990-01-01",
          "doc_count" : 1
        },
        {
          "key" : "1991-01-01-1992-01-01",
          "from" : 6.62688E11,
          "from_as_string" : "1991-01-01",
          "to" : 6.94224E11,
          "to_as_string" : "1992-01-01",
          "doc_count" : 1
        }
      ]
    }
  }
}

terms聚合

我们也可以通过 term 聚合来查询某一个关键字出现的频率。在如下的 term 聚合中,我们想寻找在所有的文档出现 ”Happy birthday” 里按照城市进行分类的一个聚合。

代码语言:javascript复制
GET twitter/_search
{
  "query": {
    "match": {
      "message": "happy birthday"
    }
  },
  "size": 0,
  "aggs": {
    "city": {
      "terms": {
        "field": "city",
        "size": 10
      }
    }
  }
}

结果:
{
  "took" : 1,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 3,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "city" : {
      "doc_count_error_upper_bound" : 0,
      "sum_other_doc_count" : 0,
      "buckets" : [
        {
          "key" : "北京",
          "doc_count" : 2
        },
        {
          "key" : "上海",
          "doc_count" : 1
        }
      ]
    }
  }
}

在上面,我们可以看出来,在所有的含有 "Happy birthday" 的文档中,有两个是来自北京的,有一个是来自上海。

我们也可以使用 script 来生成一个在索引里没有的术语来进行统计。比如,我们可以通过如下的 script 来生成一个对文档人出生年份的统计:

代码语言:javascript复制
POST twitter/_search
{
  "size": 0,
  "aggs": {
    "birth_year": {
      "terms": {
        "script": {
          "source": "2019 - doc['age'].value"
        }, 
        "size": 10
      }
    }
  }
}

结果:
{
  "took" : 14,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 6,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "birth_year" : {
      "doc_count_error_upper_bound" : 0,
      "sum_other_doc_count" : 0,
      "buckets" : [
        {
          "key" : "1989",
          "doc_count" : 1
        },
        {
          "key" : "1991",
          "doc_count" : 1
        },
        {
          "key" : "1993",
          "doc_count" : 1
        },
        {
          "key" : "1994",
          "doc_count" : 1
        },
        {
          "key" : "1997",
          "doc_count" : 1
        },
        {
          "key" : "1999",
          "doc_count" : 1
        }
      ]
    }
  }
}

Histogram Aggregation

基于多桶值源的汇总,可以应用于从文档中提取的数值或数值范围值。 它根据值动态构建固定大小(也称为间隔)的存储桶。

代码语言:javascript复制
GET twitter/_search
{
  "size": 0,
  "aggs": {
    "age_distribution": {
      "histogram": {
        "field": "age",
        "interval": 2
      }
    }
  }
}

结果:
{
  "took" : 54,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 6,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "age_distribution" : {
      "buckets" : [
        {
          "key" : 20.0,
          "doc_count" : 1
        },
        {
          "key" : 22.0,
          "doc_count" : 1
        },
        {
          "key" : 24.0,
          "doc_count" : 1
        },
        {
          "key" : 26.0,
          "doc_count" : 1
        },
        {
          "key" : 28.0,
          "doc_count" : 1
        },
        {
          "key" : 30.0,
          "doc_count" : 1
        }
      ]
    }
  }
}

date_histogram

这种聚合类似于正常的直方图,但只能与日期或日期范围值一起使用。 由于日期在 Elasticsearch 中内部以长值表示,因此也可以但不准确地对日期使用正常的直方图。

代码语言:javascript复制
GET twitter/_search
{
  "size": 0,
  "aggs": {
    "age_distribution": {
      "date_histogram": {
        "field": "DOB",
        "interval": "year"
      }
    }
  }
}

结果:
{
  "took" : 7,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 6,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "age_distribution" : {
      "buckets" : [
        {
          "key_as_string" : "1989-01-01T00:00:00.000Z",
          "key" : 599616000000,
          "doc_count" : 1
        },
        {
          "key_as_string" : "1990-01-01T00:00:00.000Z",
          "key" : 631152000000,
          "doc_count" : 0
        },
        {
          "key_as_string" : "1991-01-01T00:00:00.000Z",
          "key" : 662688000000,
          "doc_count" : 1
        },
        {
          "key_as_string" : "1992-01-01T00:00:00.000Z",
          "key" : 694224000000,
          "doc_count" : 0
        },
        {
          "key_as_string" : "1993-01-01T00:00:00.000Z",
          "key" : 725846400000,
          "doc_count" : 1
        },
        {
          "key_as_string" : "1994-01-01T00:00:00.000Z",
          "key" : 757382400000,
          "doc_count" : 1
        },
        {
          "key_as_string" : "1995-01-01T00:00:00.000Z",
          "key" : 788918400000,
          "doc_count" : 0
        },
        {
          "key_as_string" : "1996-01-01T00:00:00.000Z",
          "key" : 820454400000,
          "doc_count" : 0
        },
        {
          "key_as_string" : "1997-01-01T00:00:00.000Z",
          "key" : 852076800000,
          "doc_count" : 1
        },
        {
          "key_as_string" : "1998-01-01T00:00:00.000Z",
          "key" : 883612800000,
          "doc_count" : 0
        },
        {
          "key_as_string" : "1999-01-01T00:00:00.000Z",
          "key" : 915148800000,
          "doc_count" : 1
        }
      ]
    }
  }
}

cardinality聚合

我们也可以使用 cardinality 聚合来统计到底有多少个城市:

代码语言:javascript复制
GET twitter/_search
{
  "size": 0,
  "aggs": {
    "number_of_cities": {
      "cardinality": {
        "field": "city.keyword"
      }
    }
  }
}

结果:
{
  "took" : 9,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 6,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "number_of_cities" : {
      "value" : 2
    }
  }
}

Metric 聚合

我们可以使用 Metrics 来统计我们的数值数据,比如我们想知道所有用户的平均年龄是多少?我们可以用下面的聚合:

代码语言:javascript复制
GET twitter/_search
{
  "size": 0,
  "aggs": {
    "average_age": {
      "avg": {
        "field": "age"
      }
    }
  }
}

结果:
{
  "took" : 1,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 6,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "average_age" : {
      "value" : 25.166666666666668
    }
  }
}

我们也可以对只在北京的用户文档进行统计:

代码语言:javascript复制
POST twitter/_search
{
  "size": 0,
  "query": {
    "match": {
      "city": "北京"
    }
  },
  "aggs": {
    "average_age_beijing": {
      "avg": {
        "field": "age"
      }
    }
  }
}

结果:
{
  "took" : 1,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 5,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "average_age_beijing" : {
      "value" : 24.6
    }
  }
}

上面我们先查询到所有在北京的用户,然后再对这些文档进行求年龄的平均值。返回的结果:

聚合通常在查询搜索结果上执行。 Elasticsearch 提供了一个特殊的 global 聚合,该全局对所有文档执行,而不受查询的影响。

代码语言:javascript复制
POST twitter/_search
{
  "size": 0,
  "query": {
    "match": {
      "city": "北京"
    }
  },
  "aggs": {
    "average_age_beijing": {
      "avg": {
        "field": "age"
      }
    },
    "average_age_all": {
      "global": {},
      "aggs": {
        "age_global_avg": {
          "avg": {
            "field": "age"
          }
        }
      }
    }
  }
}

在上面我们在 average_age_all 里添加了一个 gobal 的聚合,这个平均值将会使用所有的 6 个文档而不是限于在这个查询的 5 个北京的文档。返回的结果是:

代码语言:javascript复制
{
  "took" : 0,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 5,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "average_age_beijing" : {
      "value" : 24.6
    },
    "average_age_all" : {
      "doc_count" : 6,
      "age_global_avg" : {
        "value" : 25.166666666666668
      }
    }
  }
}

我们也可以对整个年龄进行一个统计,比如:

代码语言:javascript复制
GET twitter/_search
{
  "size": 0,
  "aggs": {
    "age_stats": {
      "stats": {
        "field": "age"
      }
    }
  }
}

结果:
{
  "took" : 1,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 6,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "age_stats" : {
      "count" : 6,
      "min" : 20.0,
      "max" : 30.0,
      "avg" : 25.166666666666668,
      "sum" : 151.0
    }
  }
}

在这里,我们可以看到到底有多少条数据,并且最大,最小的,平均值及加起来的合都在这里一起显示。

我们也可以只得到这个年龄的最大值:

代码语言:javascript复制
GET twitter/_search
{
  "size": 0,
  "aggs": {
    "age_max": {
      "max": {
        "field": "age"
      }
    }
  }
}

结果:
{
  "took" : 2,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 6,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "age_max" : {
      "value" : 30.0
    }
  }
}

聚合通常适用于从聚合文档集中提取的值。 可以使用聚合体内的字段键从特定字段提取这些值,也可以使用脚本提取这些值。我们可以通过 script 的方法来对我们的 aggregtion 结果进行重新计算:

代码语言:javascript复制
GET twitter/_search
{
  "size": 0,
  "aggs": {
    "average_age_1.5": {
      "avg": {
        "field": "age",
        "script": {
          "source": "_value * params.correction",
          "params": {
            "correction": 1.5
          }
        }
      }
    }
  }
}

结果:
{
  "took" : 24,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 6,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "average_age_1.5" : {
      "value" : 37.75
    }
  }
}

上面的这个聚合可以帮我们计算平均值再乘以 1.5 倍的结果。运行一下的结果如下:

我们也可以直接使用 script 的方法来进行聚合。在这种情况下,我们可以不指定特定的 field 。我们可能把很多项进行综合处理,并把这个结果来进行聚合:

代码语言:javascript复制
GET twitter/_search
{
  "size": 0,
  "aggs": {
    "average_2_times_age": {
      "avg": {
        "script": {
          "source": "doc['age'].value * params.times",
          "params": {
            "times": 2.0
          }
        }
      }
    }
  }
}

结果:
{
  "took" : 8,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 6,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "average_2_times_age" : {
      "value" : 50.333333333333336
    }
  }
}

Percentile aggregation

百分位数(percentile)表示观察值出现一定百分比的点。 例如,第 95 个百分位数是大于观察值的 95% 的值。该聚合针对从聚合文档中提取的数值计算一个或多个百分位数。 这些值可以从文档中的特定数字字段中提取,也可以由提供的脚本生成。

百分位通常用于查找离群值。 在正态分布中,第 0.13 和第 99.87 个百分位数代表与平均值的三个标准差。 任何超出三个标准偏差的数据通常被视为异常。这在统计的角度是非常有用的。

我们现在来通过一个简单的例子来展示 Percentile aggregation 的用法:

代码语言:javascript复制
GET twitter/_search
{
  "size": 0,
  "aggs": {
    "age_quartiles": {
      "percentiles": {
        "field": "age",
        "percents": [
          25,
          50,
          75,
          100
        ]
      }
    }
  }
}

结果:
{
  "took" : 3,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 6,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "age_quartiles" : {
      "values" : {
        "25.0" : 22.0,
        "50.0" : 25.5,
        "75.0" : 28.0,
        "100.0" : 30.0
      }
    }
  }
}

在上面,我们使用了以叫做 age 的字段。它是一个数值的字段。我们通过 percentile aggregation 可以得到 25%,50% 及 75% 的人在什么范围。

我们可以看到 25% 的人平均年龄是低于 22.0 岁,而 50% 的人的年龄是低于 25.5 岁,而所有的人的年龄都是低于 30 岁的。这里的 50% 的年龄和我们之前计算的平均年龄是不一样的。

代码语言:javascript复制
GET twitter/_search
{
  "size": 0,
  "aggs": {
    "avarage_age": {
      "avg": {
        "field": "age"
      }
    }
  }
}

结果:
{
  "took" : 0,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  "hits" : {
    "total" : {
      "value" : 6,
      "relation" : "eq"
    },
    "max_score" : null,
    "hits" : [ ]
  },
  "aggregations" : {
    "avarage_age" : {
      "value" : 25.166666666666668
    }
  }
}

更为复杂的聚合

我们可以结合上面的 bucket 聚合及 metric 聚合形成更为复杂的搜索:

代码语言:javascript复制
GET twitter/_search
{
  "size": 0,
  "aggs": {
    "cities": {
      "terms": {
        "field": "city",
        "order": {
          "average_age": "desc"
        }, 
        "size": 5
      },
      "aggs": {
        "average_age": {
          "avg": {
            "field": "age"
          }
        }
      }
    }
  }
}

在上面,我们首先通过 terms 来生成每个城市的桶聚合,然后在每个桶里计算所有文档的平均年龄。在正常的情况下,这个排序是按照每个城市里文档的多少由多到少来排序的。在我们上面的搜索中,我们特意添加 average_age 来进行降序排序。这样返回的结果如下:

代码语言:javascript复制
"aggregations" : {
    "cities" : {
      "doc_count_error_upper_bound" : 0,
      "sum_other_doc_count" : 0,
      "buckets" : [
        {
          "key" : "上海",
          "doc_count" : 1,
          "average_age" : {
            "value" : 28.0
          }
        },
        {
          "key" : "北京",
          "doc_count" : 5,
          "average_age" : {
            "value" : 24.6
          }
        }
      ]
    }

上面显示,有两个城市:上海及北京。在上海城市中有 1 个文档,而在北京城市里有 5 个文档。同时,我们也计算出来每个城市的平均年龄。由于我们使用了 average_age 来进行降排序,在我们的结果中,我们可以看到“上海”城市排在前面,这是因为上海城市的平均年龄比北京的平均年龄高。

0 人点赞