首发公众号:码农架构
专注于系统架构、高可用、高性能、高并发类技术分享
消息在真正发往 Kafka 之前,有可能需要经历拦截器、序列化器和分区器等一系列的作用,前面已经做了一系列分析。那么在此之后又会发生什么呢?先看一下生产者客户端的整体架构,如下图所示。
整个生产者客户端由两个线程协调运行,这两个线程分别为主线程和发送线程。在主线程中由 KafkaProducer 创建消息,然后通过可能的拦截器、序列化器和分区器的作用之后缓存到消息收集器(RecordAccumulator,也称为消息累加器)中。发送线程负责从消息收集器中获取消息并将其发送到 Kafka 中。
主要用来缓存消息以便发送线程可以批量发送,进而减少网络传输的资源消耗以提升性能。消息收集器缓存的大小可以通过生产者客户端参数 buffer.memory 配置,默认值为 33554432B,即32MB。如果生产者发送消息的速度超过发送到服务器的速度,则会导致生产者空间不足,这个时候 KafkaProducer 的 send() 方法调用要么被阻塞,要么抛出异常,这个取决于参数 max.block.ms 的配置,此参数的默认值为60000,即60秒。
主线程中发送过来的消息都会被追加到消息收集器的某个双端队列(Deque)中,在其的内部为每个分区都维护了一个双端队列,队列中的内容就是ProducerBatch,即 Deque。消息写入缓存时,追加到双端队列的尾部;Sender 读取消息时,从双端队列的头部读取。注意 ProducerBatch 不是 ProducerRecord,ProducerBatch 中可以包含一至多个 ProducerRecord。
通俗地说,ProducerRecord 是生产者中创建的消息,而 ProducerBatch 是指一个消息批次,ProducerRecord 会被包含在 ProducerBatch 中,这样可以使字节的使用更加紧凑。与此同时,将较小的 ProducerRecord 拼凑成一个较大的 ProducerBatch,也可以减少网络请求的次数以提升整体的吞吐量。
如果生产者客户端需要向很多分区发送消息,则可以将 buffer.memory 参数适当调大以增加整体的吞吐量。
ProducerBatch 的大小和 batch.size 参数也有着密切的关系。当一条消息流入消息收集器时,会先寻找与消息分区所对应的双端队列(如果没有则新建),再从这个双端队列的尾部获取一个 ProducerBatch(如果没有则新建),查看 ProducerBatch 中是否还可以写入这个 ProducerRecord,如果可以则写入,如果不可以则需要创建一个新的 ProducerBatch。
在新建 ProducerBatch 时评估这条消息的大小是否超过 batch.size 参数的大小,如果不超过,那么就以 batch.size 参数的大小来创建 ProducerBatch,这样在使用完这段内存区域之后,可以通过 BufferPool 的管理来进行复用;如果超过,那么就以评估的大小来创建 ProducerBatch,这段内存区域不会被复用。
Sender 从 RecordAccumulator 中获取缓存的消息之后,会进一步将原本<分区, Deque< ProducerBatch>> 的保存形式转变成 <Node, List< ProducerBatch> 的形式,其中 Node 表示 Kafka 集群的 broker 节点。
对于网络连接来说,生产者客户端是与具体的 broker 节点建立的连接,也就是向具体的 broker 节点发送消息,而并不关心消息属于哪一个分区;而对于 KafkaProducer 的应用逻辑而言,我们只关注向哪个分区中发送哪些消息,所以在这里需要做一个应用逻辑层面到网络I/O层面的转换。
请求在从 Sender 线程发往 Kafka 之前还会保存到 InFlightRequests 中,保存对象的具体形式为 Map<NodeId, Deque>,它的主要作用是缓存了已经发出去但还没有收到响应的请求(NodeId 是一个 String 类型,表示节点的 id 编号)。
与此同时,InFlightRequests 还提供了许多管理类的方法,并且通过配置参数还可以限制每个连接(也就是客户端与 Node 之间的连接)最多缓存的请求数。这个配置参数为 max.in.flight.requests.per.connection,默认值为5,即每个连接最多只能缓存5个未响应的请求,超过该数值之后就不能再向这个连接发送更多的请求了,除非有缓存的请求收到了响应(Response)。通过比较 Deque 的 size 与这个参数的大小来判断对应的 Node 中是否已经堆积了很多未响应的消息,如果真是如此,那么说明这个 Node 节点负载较大或网络连接有问题,再继续向其发送请求会增大请求超时的可能。