快速入门Kafka系列(6)——Kafka的JavaAPI操作

2021-01-27 15:58:58 浏览数 (1)

作为快速入门Kafka系列的第六篇博客,本篇为大家带来的是Kafka的JavaAPI操作~

码字不易,先赞后看!


Kafka的JavaAPI操作

1. 创建Maven工程并添加jar包

首先在IDEA中我们创建一个maven工程,并添加以下依赖的jar包的坐标到pom.xml

代码语言:javascript复制
 <dependencies>
        <!-- https://mvnrepository.com/artifact/org.apache.kafka/kafka-clients -->
        <dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka-clients</artifactId>
            <version>2.0.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka-streams</artifactId>
            <version>2.0.0</version>
        </dependency>

    </dependencies>

    <build>
        <plugins>
            <!-- java编译插件 -->
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-compiler-plugin</artifactId>
                <version>3.2</version>
                <configuration>
                    <source>1.8</source>
                    <target>1.8</target>
                    <encoding>UTF-8</encoding>
                </configuration>
            </plugin>
        </plugins>
    </build>

    <repositories>
        <repository>
            <id>maven-ali</id>
            <url>http://maven.aliyun.com/nexus/content/groups/public//</url>
            <releases>
                <enabled>true</enabled>
            </releases>
            <snapshots>
                <enabled>true</enabled>
                <updatePolicy>always</updatePolicy>
                <checksumPolicy>fail</checksumPolicy>
            </snapshots>
        </repository>
    </repositories>

2. 生产者代码

1. 使用生产者,生产数据
代码语言:javascript复制
/*
用于生产数据到kafka集群
 */
public class Producer1 {

    /*
    程序的入口
     */
    public static void main(String[] args){

        //编写生产数据的程序

        //1、配置kafka集群环境(设置)
        Properties props = new Properties();
        //kafka服务器地址
        props.put("bootstrap.servers", "node01:9092,node02:9092,node03:9092");
        //消息确认机制
        props.put("acks", "all");
        //重试机制
        props.put("retries", 0);
        //批量发送的大小
        props.put("batch.size", 16384);
        //消息延迟
        props.put("linger.ms", 1);
        //批量的缓冲区大小
        props.put("buffer.memory", 33554432);
        // kafka   key 和value的序列化
        props.put("key.serializer","org.apache.kafka.common.serialization.StringSerializer");
        props.put("value.serializer","org.apache.kafka.common.serialization.StringSerializer");

        //2、实例一个生产者对象
        KafkaProducer<String, String> kafkaProducer = new KafkaProducer<String, String>(props);

        for (int i = 0; i < 9; i  ) {

            //3、发送数据 ,需要一个producerRecord对象,最少参数 String topic, V value 
            //ProducerRecord<K, V> record
            ProducerRecord producerRecord = new ProducerRecord<>("18BD12","bbbb___" i);
            
            //4、通过生产者对象将数据发送到kafka集群
            kafkaProducer.send(producerRecord);


        }
        //4、关闭成产者
        kafkaProducer.close();

    }
}
2. kafka当中的数据分区

kafka生产者发送的消息,都是保存在broker当中,我们可以自定义分区规则,决定消息发送到哪个partition里面去进行保存。

查看ProducerRecord这个类的源码,就可以看到kafka的各种不同分区策略。

kafka当中支持以下四种数据的分区方式:

代码语言:javascript复制
       //1、没有指定分区编号,没有指定key,时采用轮询方式存户数据
       ProducerRecord producerRecord = new ProducerRecord<>("18BD12","bbbb___" i);
            
       //2、没有指定分区编号,指定key时,数据分发策略为对key求取hash值,这个值与分区数量取余,于数就是分区编号。
       //ProducerRecord producerRecord = new ProducerRecord("18BD12","test","aaaa___" i);
           
       //3、指定分区编号,所有数据输入到指定的分区内
       //ProducerRecord producerRecord = new ProducerRecord("18BD12",1,"test","aaaa___" i);

       //4、自定义分区策略。如果不自定义分区规则,那么会将数据使用轮询的方式均匀的发送到各个分区里面去
       //ProducerRecord producerRecord = new ProducerRecord("18BD12","test","aaaa___" i);

其中,自定义分区策略需要我们单独创建一个类,并在类中定义我们所想要的分区规则。

代码语言:javascript复制
public class KafkaCustomPartitioner implements Partitioner {
	@Override
	public void configure(Map<String, ?> configs) {
	}

	@Override
	public int partition(String topic, Object arg1, byte[] keyBytes, Object arg3, byte[] arg4, Cluster cluster) {
		List<PartitionInfo> partitions = cluster.partitionsForTopic(topic);
	    int partitionNum = partitions.size();
		Random random = new Random();
		int partition = random.nextInt(partitionNum);
	    return partition;
	}

	@Override
	public void close() {
		
	}

}

并在主代码中添加配置,其中partitioner.class的值对应的就是我们单独写的一个实现Partitioner 的类在项目中具体带包名的路径

代码语言:javascript复制
props.put("partitioner.class", "com.czxy.demo_test.Demo05.KafkaCustomPartitioner ");

我们也可以通过IDEA中的快捷键来实现快速获取

3. 消费者代码

消费者要从kafka Cluster进行消费数据,必要条件有以下四个

代码语言:javascript复制
#1、地址
bootstrap.servers=node01:9092
#2、序列化 
key.serializer=org.apache.kafka.common.serialization.StringSerializer value.serializer=org.apache.kafka.common.serialization.StringSerializer
#3、主题(topic) 需要制定具体的某个topic(order)即可。
#4、消费者组 group.id=test
3.1 自动提交offset

消费完成之后,自动提交offset

代码语言:javascript复制
public class Consumer01 {

    public static void main(String[] args) {

        //1、添加配置文件
        Properties props = new Properties();
        //指定kafka服务器
        props.put("bootstrap.servers", "node01:9092,node02:9092,node03:9092");
        //消费组
        props.put("group.id", "test");
        //以下两行代码 ---消费者自动提交offset值
        props.put("enable.auto.commit", "true");
        //自动提交的周期
        props.put("auto.commit.interval.ms",  "1000");
        //kafka   key 和value的反序列化
        props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");

        //2、实例消费者对象
        KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<String, String>(props);

        //3、设置读取的topic
        kafkaConsumer.subscribe(Arrays.asList("student"));

        //循环遍历
        while (true){
            //4、拉取数据,并输出
            //获取到所有的数据
            ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(1000);
            //遍历所有数据,获得到一条
            for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
                //一条数据
                System.out.println("当前数据:" consumerRecord.value() ", 偏移量:offset:" consumerRecord.offset());
            }

        }
    }
}
3.2 手动提交offset

如果Consumer在获取数据后,需要加入处理,数据完毕后才确认offset,需要程序来控制offset的确认,该如何操作?

我们就需要在配置kafka环境配置的时候关闭自动提交确认选项

代码语言:javascript复制
props.put("enable.auto.commit",  "false");

然后在循环遍历消费的过程中,消费完毕就手动提交。

代码语言:javascript复制
  while (true){

            //4、拉取数据,并输出
            ConsumerRecords<String, String> consumerRecords = kafkaConsumer.poll(1000);
            //遍历所有数据获取一条
            for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {
                System.out.println(consumerRecord.value()   "     " consumerRecord.offset());
            }

            //手动提交offset
            kafkaConsumer.commitSync();


        }

或者也可以将手动提交offset的语句放置到循环体中,每消费一条数据,就手动提交一次offset也是可以的。

3.3 消费完每个分区之后手动提交offset

上面的示例使用commitSync将所有已接收的记录标记为已提交。 在某些情况下,您可能希望通过明确指定偏移量 来更好地控制已提交的记录。 在下面的示例中,我们在完成处理每个分区中的记录后提交偏移量。

代码语言:javascript复制
try {
while(running) {
ConsumerRecords<String, String> records = consumer.poll(Long.MAX_VALUE); 
for (TopicPartition partition : records.partitions()) {
List<ConsumerRecord<String, String>> partitionRecords = records.records(partition);

for (ConsumerRecord<String, String> record : partitionRecords) { 
System.out.println(record.offset()   ": "   record.value());
}

long lastOffset = partitionRecords.get(partitionRecords.size() -1).offset();
consumer.commitSync(Collections.singletonMap(partition, new OffsetAndMetadata(lastOffset   1)));

}
}
} finally { 
consumer.close();
}

注意事项:

提交的偏移量应始终是应用程序将读取的下一条消息的偏移量。 因此,在调用commitSync(偏移量)时,应该 在最后处理的消息的偏移量中添加一个。

3.4 指定分区数据进行消费

1、如果进程正在维护与该分区关联的某种本地状态(如本地磁盘上的键值存储),那么它应该只获取它在磁盘上 维护的分区的记录。

2、如果进程本身具有高可用性,并且如果失败则将重新启动(可能使用YARN,Mesos或AWS工具等集群管理框 架,或作为流处理框架的一部分)。 在这种情况下,Kafka不需要检测故障并重新分配分区,因为消耗过程将在另 一台机器上重新启动。

代码语言:javascript复制
       // 第一个参数为消费的Topic,第二个参数为消费的Partition
        TopicPartition topicPartition0 = new TopicPartition("18BD12",0);
        TopicPartition topicPartition2 = new TopicPartition("18BD12",1);

        kafkaConsumer.assign(Arrays.asList(topicPartition0,topicPartition2));

注意事项:

1、要使用此模式,您只需使用要使用的分区的完整列表调用assign(Collection),而不是使用subscribe订阅主题。

2、主题与分区订阅只能二选一

3.5 重复消费与数据丢失

说明:

  • 已经消费的数据对于kafka来说,会将消费组里面的offset值进行修改,那什么时候进行修改了?是在数据消费 完成之后,比如在控制台打印完后自动提交;
  • 提交过程:是通过kafka将offset进行移动到下个message所处的offset的位置。
  • 拿到数据后,存储到hbase中或者mysql中,如果hbase或者mysql在这个时候连接不上,就会抛出异常,如果在处理数据的时候已经进行了提交,那么kafka上的offset值已经进行了修改了,但是hbase或者mysql中没有数据,这个时候就会出现数据丢失。
  • 什么时候提交offset值?在Consumer将数据处理完成之后,再来进行offset的修改提交。默认情况下offset是 自动提交,需要修改为手动提交offset值。
  • 如果在处理代码中正常处理了,但是在提交offset请求的时候,没有连接到kafka或者出现了故障,那么该次修 改offset的请求是失败的,那么下次在进行读取同一个分区中的数据时,会从已经处理掉的offset值再进行处理一 次,那么在hbase中或者mysql中就会产生两条一样的数据,也就是数据重复

4. Kafka Streams API开发

需求:使用StreamAPI获取test这个topic当中的数据,然后将数据全部转为大写,写入到test2这个topic当中去。

4.1 创建一个Topic

node01服务器使用以下命令来常见一个topic 名称为test2

代码语言:javascript复制
cd /export/servers/kafka_2.11-1.0.0/
bin/kafka-topics.sh --create  --partitions 3 --replication-factor 2 --topic test2 --zookeeper node01:2181,node02:2181,node03:2181
4.2 开发StreamsAPI
代码语言:javascript复制
public class KafkaStream {

    public static void main(String[] args) {

        Properties props = new Properties();
        //设置程序的唯一标识
        props.put(StreamsConfig.APPLICATION_ID_CONFIG, "wordcount-application12");
        //设置kafka集群
        props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "node01:9092,node02:9092,Node03:9092");
        //设置序列化与反序列化
        props.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass());
        props.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass());


        //实例一个计算逻辑
        StreamsBuilder streamsBuilder = new StreamsBuilder();
        //设置计算逻辑   stream 在哪里读取数据                ->                               to 将数据写入哪里
        streamsBuilder.stream("test").mapValues(line->line.toString().toUpperCase()).to("test2");


        //构建Topology对象(拓扑,流程)
        final Topology topology = streamsBuilder.build();

        //实例 kafka流
        KafkaStreams streams = new KafkaStreams(topology, props);
        //启动流计算
        streams.start();
    }
}

上述代码成功运行之后,就可以做到实时将test中生产的数据写入到test2中


好了,本次的知识分享就到这里,受益或对大数据技术感兴趣的朋友记得点赞关注一下哟~,下一篇博客将为大家介绍的是Kafka的log存储机制与消息不丢失机制,敬请期待|ू・ω・` )

0 人点赞