Lucene系列(七)索引格式之fdx文件

2021-02-02 10:31:30 浏览数 (2)

前言

这篇文章介绍。fdx 文件格式。

.fdx 文件整体格式

看起来比较简单,实际写入代码是 fdt,fdm,fdx 三个文件中最复杂的。

其中内容包括:

  1. IndexHeader. 索引文件头,前面说过,就不细说了。
  2. Footer: 索引文件脚,不细说。
  3. ChunkDocsNum: 一个数组,含义是:每个 Chunk 中的 doc 数量。
  4. ChunkStartPoint: 一个数组,含义是:每个 chunk 的内容在 fdt 文件中文件地址。

鉴于存储方式比较复杂,我们就直接快进到源代码。

写入代码分析

CompressingStoredFieldsWriter类的构造函数中,初始化了FieldsIndexWriter类的实例,由它来进行 fdx 文件的写入,看看他的构造函数。

代码语言:javascript复制
  FieldsIndexWriter(Directory dir, String name, String suffix, String extension,
                    String codecName, byte[] id, int blockShift, IOContext ioContext) throws IOException {
    this.dir = dir;
    this.name = name;
    this.suffix = suffix;
    this.extension = extension;
    this.codecName = codecName;
    this.id = id;
    this.blockShift = blockShift;
    this.ioContext = ioContext;
    // docNum 的 tmp 文件
    this.docsOut = dir.createTempOutput(name, codecName   "-doc_ids", ioContext);
    boolean success = false;
    try {
      CodecUtil.writeHeader(docsOut, codecName   "Docs", VERSION_CURRENT);

      // StartPoint 的 tmp 文件
      filePointersOut = dir.createTempOutput(name, codecName   "file_pointers", ioContext);
      CodecUtil.writeHeader(filePointersOut, codecName   "FilePointers", VERSION_CURRENT);
      success = true;
    } finally {
      if (success == false) {
        close();
      }
    }
  }

在构造函数中,没有创建 fdx 文件,而是创建了两个临时文件,docsOutfilePointOut. 分别用于存储前面提到的两份数据。每个 Chunk 中的 doc 数量每个 chunk 的内容在 fdt 文件中文件地址.

之后,每次向 fdt 文件中,写入一个 chunk 的内容,同时会调用下方的方法,写入当前 chunk 的 doc 数量,及 fdt 文件地址。注意写入的是临时文件。

代码语言:javascript复制
  void writeIndex(int numDocs, long startPointer) throws IOException {
    assert startPointer >= previousFP;
    // doc num
    docsOut.writeVInt(numDocs);
    // filepoint
    filePointersOut.writeVLong(startPointer - previousFP);
    previousFP = startPointer;
    totalDocs  = numDocs;
    totalChunks  ;
  }

在所有数据写入完成后,会调用FieldsIndexWriter类的 finish 方法,来进行生成真正的 fdx 文件。该方法比较复杂,让我们一步步捋一下。

代码语言:javascript复制
  /**
   * 在这里生成的 fdx 文件,从两个 tmp 文件里面找到每个 chunk 的 doc 数量,fdt 文件中存储的字节数,
   * 这两个内容,写到 meta 文件和 fdx 文件中,配合起来存储的
   * <p>
   * 这个类本身就是为了 fdx 文件搞的,就是为了写 fdt 的索引,写得少很正常
   */
  void finish(int numDocs, long maxPointer, IndexOutput metaOut) throws IOException {
    if (numDocs != totalDocs) {
      throw new IllegalStateException("Expected "   numDocs   " docs, but got "   totalDocs);
    }
    CodecUtil.writeFooter(docsOut);
    CodecUtil.writeFooter(filePointersOut);
    IOUtils.close(docsOut, filePointersOut);

    // dataOut 是 fdx 文件,是用来对 fdt 文件做索引的文件,所以 fdt 文件写入内容,我这里记录每个 chunk 的 doc 数量,占用字节数即可
    // 所以这里只能调用一次么,无论是多少个多大的 field,都只能调用一次这里么
    // 写 fdx 文件
    try (IndexOutput dataOut = dir.createOutput(IndexFileNames.segmentFileName(name, suffix, extension), ioContext)) {
      // 这个 header,48 个字节。
      CodecUtil.writeIndexHeader(dataOut, codecName   "Idx", VERSION_CURRENT, id, suffix);

      metaOut.writeInt(numDocs);
      metaOut.writeInt(blockShift);
      metaOut.writeInt(totalChunks   1);
      // 这个 filePointer, 此时只写了一个 header 的长度,48
      long filePointer = dataOut.getFilePointer();
      metaOut.writeLong(filePointer);

      try (ChecksumIndexInput docsIn = dir.openChecksumInput(docsOut.getName(), IOContext.READONCE)) {
        CodecUtil.checkHeader(docsIn, codecName   "Docs", VERSION_CURRENT, VERSION_CURRENT);
        Throwable priorE = null;
        try {
          // 这里做的配合是, meta 里面存了 min/斜率等,真实的数组偏移量在 dataOut 里面存储
          final DirectMonotonicWriter docs = DirectMonotonicWriter.getInstance(metaOut, dataOut, totalChunks   1, blockShift);
          long doc = 0;
          docs.add(doc);
          // 注意,这里是每一 chunk, 而不是 per document
          for (int i = 0; i < totalChunks;   i) {
            // 每个 chunk 的 doc 数量
            doc  = docsIn.readVInt();
            docs.add(doc);
          }
          docs.finish();
          if (doc != totalDocs) {
            throw new CorruptIndexException("Docs don't add up", docsIn);
          }
        } catch (Throwable e) {
          priorE = e;
        } finally {
          CodecUtil.checkFooter(docsIn, priorE);
        }
      }
      dir.deleteFile(docsOut.getName());
      docsOut = null;

      long filePointer1 = dataOut.getFilePointer();
      metaOut.writeLong(filePointer1);
      try (ChecksumIndexInput filePointersIn = dir.openChecksumInput(filePointersOut.getName(), IOContext.READONCE)) {
        CodecUtil.checkHeader(filePointersIn, codecName   "FilePointers", VERSION_CURRENT, VERSION_CURRENT);
        Throwable priorE = null;
        try {
          // 其实由于我测试的时候只有一两个 doc,肯定在一个 chunk, 所以 dataOut 里面都没写入啥东西
          final DirectMonotonicWriter filePointers = DirectMonotonicWriter.getInstance(metaOut, dataOut, totalChunks   1, blockShift);
          long fp = 0;
          // 这里存储的是每一个 chunk 的实际数据的字节长度
          for (int i = 0; i < totalChunks;   i) {
            fp  = filePointersIn.readVLong();
            filePointers.add(fp);
          }
          if (maxPointer < fp) {
            throw new CorruptIndexException("File pointers don't add up", filePointersIn);
          }
          filePointers.add(maxPointer);
          filePointers.finish();
        } catch (Throwable e) {
          priorE = e;
        } finally {
          CodecUtil.checkFooter(filePointersIn, priorE);
        }
      }
      dir.deleteFile(filePointersOut.getName());
      filePointersOut = null;

      // meta 里面再搞个索引
      long filePointer2 = dataOut.getFilePointer();
      metaOut.writeLong(filePointer2);
      metaOut.writeLong(maxPointer);

      CodecUtil.writeFooter(dataOut);
    }
  }

需要注意,此时所有的 field 数据已经写入。进行文件的转换操作而已。

  1. 向两个临时文件写入 Footer, 之后将其关闭。
  2. 打开真正的 fdx 文件,写入 Header.
  3. 向之前介绍过的 fdm 文件中,写入部分元数据。不是这篇文章重点,就不详细解释了。
  4. 打开刚才的临时文件DocsOut, 把数据读出来。使用DirectMonotonicWriter来将数据写入 fdx 文件。对DirectMonotonicWriter类不熟悉的话,可以阅读 DirectMonotonicWriter 源码解析. 之后将 Docs 的临时文件删除。
  5. 打开刚才的临时文件filePointOut, 把数据读出来,调用DirectMonotonicWriter进行写入 fdx 文件。之后将临时文件删除。
  6. 向 fdx 文件写入 Footer. 关闭文件。

如何索引?

从名字上可以看出来,fdx 文件是用来作为 fdt 文件的索引的。作用就是:能够方便快速查询到指定的 doc 的 field 信息。

那么它是如何作为索引的呢,三个 field 相关文件的对应关系是怎样的。

以下内容为猜想内容,如果你看到这条红字,不要相信。未来的某一天,我看到代码且确认了下面的内容,我会回来删掉这行红字。

当我们拿到一个 DocId, 该如何通过这三个文件拿到该 doc 的具体 field 信息呢?

首先,fdx 及 fdm 文件都比较小,可以全部加载到内存中。

  1. 根据 fdm 中的 ChunkDocsNumIndex, 可以找到在 fdx 文件中,存储 Chunk 中 doc 数量的起始文件地址。
  2. 读出每个 Chunk 的 doc 数量,用 docId, 即可以算出 该 DocId 位于第几个 Chunk 的第几个 Doc.
  3. 根据 fdx 文件中 ChunkDocsNum 和 ChunkStartPoint 文件时平行数据的关系,即可以求出,DocId 所在的 chunk, 其 field 信息在 fdt 文件中的起始文件位置。
  4. 将 fdt 文件中,该 chunk 的数据读入,即可获取到给定 DocId 的具体内容。

不用完整的遍历 fdt 文件,而是通过 fdx 及 fdm 做了一些索引操作。比较高效。

总结

fdx 文件中,主要是存储以 chunk 为单位的 doc 数量,对应 chunk 在 fdt 文件中的起始位置。由这些数据可以对 fdt 文件进行随机方法而不用顺序访问,加快了读取速度。

为了对 fdx 文件中的数据进行压缩,防止读取到内存中过大,需要 fdm 进行一些配合存储。通过DirectMonotonicWriter进行压缩写入。

完。

以上皆为个人所思所得,如有错误欢迎评论区指正。

欢迎转载,烦请署名并保留原文链接。

联系邮箱:huyanshi2580@gmail.com

更多学习笔记见个人博客或关注微信公众号 < 呼延十 >——>呼延十

0 人点赞