文章目录
- 1. 自定义模型
- 2. 学习流程
学习于:简单粗暴 TensorFlow 2
1. 自定义模型
- 重载
call()
方法,pytorch 是重载forward()
方法
import tensorflow as tf
X = tf.constant([[1.0, 2.0, 3.0],[4.0, 5.0, 6.0]])
y = tf.constant([[10.0],[20.0]])
class Linear(tf.keras.Model):
def __init__(self):
super().__init__()
self.dense = tf.keras.layers.Dense(
units=1,
activation=None,
kernel_initializer=tf.zeros_initializer(),
bias_initializer=tf.zeros_initializer()
)
def call(self, input): # 重载 call 方法
output = self.dense(input)
return output
model = Linear()
# 优化器
optimizer = tf.keras.optimizers.SGD(learning_rate=0.001)
for i in range(100):
with tf.GradientTape() as tape: # 梯度记录器
y_pred = model(X)
loss = tf.reduce_mean(tf.square(y_pred-y)) # 损失
grads = tape.gradient(loss, model.variables) # 求导
# 更新参数
optimizer.apply_gradients(grads_and_vars=zip(grads,model.variables))
2. 学习流程
- 加载手写数字数据集
class MNistLoader():
def __init__(self):
data = tf.keras.datasets.mnist
# 加载数据
(self.train_data, self.train_label),(self.test_data, self.test_label) = data.load_data()
# 扩展维度,灰度图1通道 [batch_size, 28, 28, chanels=1]
self.train_data = np.expand_dims(self.train_data.astype(np.float32) / 255.0, axis=-1)
self.test_data = np.expand_dims(self.test_data.astype(np.float32) / 255.0, axis=-1)
self.train_label = self.train_label.astype(np.int32)
self.test_label = self.test_label.astype(np.int32)
# 样本个数
self.num_train_data, self.num_test_data = self.train_data.shape[0], self.test_data.shape[0]
def get_batch(self, batch_size):
# 从训练集里随机取出 batch_size 个样本
idx = np.random.randint(0, self.num_train_data, batch_size)
return self.train_data[idx, :], self.train_label[idx]
- 定义模型
# 自定义多层感知机模型
class MLPmodel(tf.keras.Model):
def __init__(self):
super().__init__()
# 除第一维以外的维度展平
self.flatten = tf.keras.layers.Flatten()
self.dense1 = tf.keras.layers.Dense(units=100, activation='relu')
self.dense2 = tf.keras.layers.Dense(units=10)
def call(self, input):
x = self.flatten(input)
x = self.dense1(x)
x = self.dense2(x)
output = tf.nn.softmax(x)
return output
- 训练
# 参数
num_epochs = 5
batch_size = 50
learning_rate = 1e-4
# 模型实例
mymodel = MLPmodel()
# 数据加载
data_loader = MNistLoader()
# adam 优化器
optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)
num_batches = int(data_loader.num_train_data//batch_size * num_epochs)
# 训练
for idx in range(num_batches):
# 取出数据
X,y = data_loader.get_batch(batch_size)
with tf.GradientTape() as tape: # 梯度记录
y_pred = mymodel(X) # 预测
# 计算交叉熵损失
loss = tf.keras.losses.sparse_categorical_crossentropy(y_true=y, y_pred=y_pred)
loss = tf.reduce_mean(loss)
print("batch {}, loss {}".format(idx, loss.numpy()))
# 计算梯度
grads = tape.gradient(loss, mymodel.variables)
# 更新参数
optimizer.apply_gradients(grads_and_vars=zip(grads, mymodel.variables))
- 预测
# 评估标准
sparse_categorical_accuracy = tf.keras.metrics.SparseCategoricalAccuracy()
num_batches = int(data_loader.num_test_data // batch_size)
# 预测
for idx in range(num_batches):
# 数据区间
start, end = idx*batch_size, (idx 1)*batch_size
# 放入模型,预测
y_pred = mymodel.predict(data_loader.test_data[start : end])
# 统计更新 预测信息
sparse_categorical_accuracy.update_state(y_true=data_loader.test_label[start:end],
y_pred=y_pred)
print("test 准确率:{}".format(sparse_categorical_accuracy.result()))
# test 准确率:0.9455000162124634