文章目录
-
- 1. 梯度下降
- 2. mini-Batch 梯度下降
- 3. 动量
- 4. Adam
- 5. 不同优化算法下的模型
-
- 5.1 Mini-batch梯度下降
- 5.2 带动量的Mini-batch梯度下降
- 5.3 带Adam的Mini-batch梯度下降
- 5.4 对比总结
测试题:参考博文
笔记:02.改善深层神经网络:超参数调试、正则化以及优化 W2.优化算法
- 导入一些包
import numpy as np
import matplotlib.pyplot as plt
import scipy.io
import math
import sklearn
import sklearn.datasets
from opt_utils import load_params_and_grads, initialize_parameters, forward_propagation, backward_propagation
from opt_utils import compute_cost, predict, predict_dec, plot_decision_boundary, load_dataset
from testCases import *
%matplotlib inline
plt.rcParams['figure.figsize'] = (7.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
1. 梯度下降
(Batch)Gradient Descent 梯度下降 对每一层都进行:
代码语言:javascript复制# GRADED FUNCTION: update_parameters_with_gd
def update_parameters_with_gd(parameters, grads, learning_rate):
"""
Update parameters using one step of gradient descent
Arguments:
parameters -- python dictionary containing your parameters to be updated:
parameters['W' str(l)] = Wl
parameters['b' str(l)] = bl
grads -- python dictionary containing your gradients to update each parameters:
grads['dW' str(l)] = dWl
grads['db' str(l)] = dbl
learning_rate -- the learning rate, scalar.
Returns:
parameters -- python dictionary containing your updated parameters
"""
L = len(parameters) // 2 # number of layers in the neural networks
# Update rule for each parameter
for l in range(L):
### START CODE HERE ### (approx. 2 lines)
parameters["W" str(l 1)] = parameters['W' str(l 1)] - learning_rate * grads['dW' str(l 1)]
parameters["b" str(l 1)] = parameters['b' str(l 1)] - learning_rate * grads['db' str(l 1)]
### END CODE HERE ###
return parameters
Stochastic Gradient Descent 随机梯度下降
- 每次只用1个样本来更新梯度,当训练集很大的时候,SGD 很快
- 其寻优过程有震荡
代码差异:
- (Batch) Gradient Descent:
X = data_input
Y = labels
parameters = initialize_parameters(layers_dims)
for i in range(0, num_iterations):
# Forward propagation
a, caches = forward_propagation(X, parameters)
# Compute cost.
cost = compute_cost(a, Y)
# Backward propagation.
grads = backward_propagation(a, caches, parameters)
# Update parameters.
parameters = update_parameters(parameters, grads)
- Stochastic Gradient Descent:
X = data_input
Y = labels
parameters = initialize_parameters(layers_dims)
for i in range(0, num_iterations):
for j in range(0, m):
# Forward propagation
a, caches = forward_propagation(X[:,j], parameters)
# Compute cost
cost = compute_cost(a, Y[:,j])
# Backward propagation
grads = backward_propagation(a, caches, parameters)
# Update parameters.
parameters = update_parameters(parameters, grads)
3者的差别在于,一次梯度更新时,用到的样本数量不同
调好参数的 mini-batch 梯度下降,通常优于梯度下降或随机梯度下降(特别是当训练集很大时)
2. mini-Batch 梯度下降
如何从训练集 (X,Y) 建立 mini-batches
步骤1:随机打乱数据,X 和 Y 是同步进行的,保持对应关系
步骤2:切分数据集(每个子集大小为 mini_batch_size
,最后一个可能不够,没关系)
# GRADED FUNCTION: random_mini_batches
def random_mini_batches(X, Y, mini_batch_size = 64, seed = 0):
"""
Creates a list of random minibatches from (X, Y)
Arguments:
X -- input data, of shape (input size, number of examples)
Y -- true "label" vector (1 for blue dot / 0 for red dot), of shape (1, number of examples)
mini_batch_size -- size of the mini-batches, integer
Returns:
mini_batches -- list of synchronous (mini_batch_X, mini_batch_Y)
"""
np.random.seed(seed) # To make your "random" minibatches the same as ours
m = X.shape[1] # number of training examples
mini_batches = []
# Step 1: Shuffle (X, Y)
permutation = list(np.random.permutation(m))
shuffled_X = X[:, permutation]
shuffled_Y = Y[:, permutation].reshape((1,m))
# Step 2: Partition (shuffled_X, shuffled_Y). Minus the end case.
num_complete_minibatches = math.floor(m/mini_batch_size)
# number of mini batches of size mini_batch_size in your partitionning
for k in range(0, num_complete_minibatches):
### START CODE HERE ### (approx. 2 lines)
mini_batch_X = X[:, k*mini_batch_size : (k 1)*mini_batch_size]
mini_batch_Y = Y[:, k*mini_batch_size : (k 1)*mini_batch_size]
### END CODE HERE ###
mini_batch = (mini_batch_X, mini_batch_Y)
mini_batches.append(mini_batch)
# Handling the end case (last mini-batch < mini_batch_size)
if m % mini_batch_size != 0:
### START CODE HERE ### (approx. 2 lines)
mini_batch_X = X[:, num_complete_minibatches*mini_batch_size : ]
mini_batch_Y = Y[:, num_complete_minibatches*mini_batch_size : ]
### END CODE HERE ###
mini_batch = (mini_batch_X, mini_batch_Y)
mini_batches.append(mini_batch)
return mini_batches
3. 动量
带动量 的 梯度下降可以降低 mini-batch 梯度下降时的震荡
原因:Momentum 考虑过去的梯度对当前的梯度进行平滑,梯度不会剧烈变化
- 初始化梯度的 初速度为 0
# GRADED FUNCTION: initialize_velocity
def initialize_velocity(parameters):
"""
Initializes the velocity as a python dictionary with:
- keys: "dW1", "db1", ..., "dWL", "dbL"
- values: numpy arrays of zeros of the same shape as the corresponding gradients/parameters.
Arguments:
parameters -- python dictionary containing your parameters.
parameters['W' str(l)] = Wl
parameters['b' str(l)] = bl
Returns:
v -- python dictionary containing the current velocity.
v['dW' str(l)] = velocity of dWl
v['db' str(l)] = velocity of dbl
"""
L = len(parameters) // 2 # number of layers in the neural networks
v = {}
# Initialize velocity
for l in range(L):
### START CODE HERE ### (approx. 2 lines)
v["dW" str(l 1)] = np.zeros(parameters['W' str(l 1)].shape)
v["db" str(l 1)] = np.zeros(parameters['b' str(l 1)].shape)
### END CODE HERE ###
return v
- 对每一层,更新动量
# GRADED FUNCTION: update_parameters_with_momentum
def update_parameters_with_momentum(parameters, grads, v, beta, learning_rate):
"""
Update parameters using Momentum
Arguments:
parameters -- python dictionary containing your parameters:
parameters['W' str(l)] = Wl
parameters['b' str(l)] = bl
grads -- python dictionary containing your gradients for each parameters:
grads['dW' str(l)] = dWl
grads['db' str(l)] = dbl
v -- python dictionary containing the current velocity:
v['dW' str(l)] = ...
v['db' str(l)] = ...
beta -- the momentum hyperparameter, scalar
learning_rate -- the learning rate, scalar
Returns:
parameters -- python dictionary containing your updated parameters
v -- python dictionary containing your updated velocities
"""
L = len(parameters) // 2 # number of layers in the neural networks
# Momentum update for each parameter
for l in range(L):
### START CODE HERE ### (approx. 4 lines)
# compute velocities
v["dW" str(l 1)] = beta* v["dW" str(l 1)] (1-beta)*grads['dW' str(l 1)]
v["db" str(l 1)] = beta* v["db" str(l 1)] (1-beta)*grads['db' str(l 1)]
# update parameters
parameters["W" str(l 1)] = parameters["W" str(l 1)] - learning_rate*v["dW" str(l 1)]
parameters["b" str(l 1)] = parameters["b" str(l 1)] - learning_rate*v["db" str(l 1)]
### END CODE HERE ###
return parameters, v
注意:
- 速度 v 初始化为 0,算法需要几次迭代后才能把 v 加上来,然后开始采用大的步长
- β=0 就是不带动量的标准梯度下降
如何选择 β:
- β 越大,考虑的过去的梯度越多,梯度输出也更光滑,太大也不行,过度光滑
- 经常取值为 0.8 - 0.999 之间,如果不确定,0.9 是个合理的默认值
- 参数验证选取,看其如何影响损失函数
4. Adam
参看笔记
对每一层:
- 初始化为 0
# GRADED FUNCTION: initialize_adam
def initialize_adam(parameters) :
"""
Initializes v and s as two python dictionaries with:
- keys: "dW1", "db1", ..., "dWL", "dbL"
- values: numpy arrays of zeros of the same shape as the corresponding gradients/parameters.
Arguments:
parameters -- python dictionary containing your parameters.
parameters["W" str(l)] = Wl
parameters["b" str(l)] = bl
Returns:
v -- python dictionary that will contain the exponentially weighted average of the gradient.
v["dW" str(l)] = ...
v["db" str(l)] = ...
s -- python dictionary that will contain the exponentially weighted average of the squared gradient.
s["dW" str(l)] = ...
s["db" str(l)] = ...
"""
L = len(parameters) // 2 # number of layers in the neural networks
v = {}
s = {}
# Initialize v, s. Input: "parameters". Outputs: "v, s".
for l in range(L):
### START CODE HERE ### (approx. 4 lines)
v["dW" str(l 1)] = np.zeros(parameters["W" str(l 1)].shape)
v["db" str(l 1)] = np.zeros(parameters["b" str(l 1)].shape)
s["dW" str(l 1)] = np.zeros(parameters["W" str(l 1)].shape)
s["db" str(l 1)] = np.zeros(parameters["b" str(l 1)].shape)
### END CODE HERE ###
return v, s
- 迭代更新
# GRADED FUNCTION: update_parameters_with_adam
def update_parameters_with_adam(parameters, grads, v, s, t, learning_rate = 0.01,
beta1 = 0.9, beta2 = 0.999, epsilon = 1e-8):
"""
Update parameters using Adam
Arguments:
parameters -- python dictionary containing your parameters:
parameters['W' str(l)] = Wl
parameters['b' str(l)] = bl
grads -- python dictionary containing your gradients for each parameters:
grads['dW' str(l)] = dWl
grads['db' str(l)] = dbl
v -- Adam variable, moving average of the first gradient, python dictionary
s -- Adam variable, moving average of the squared gradient, python dictionary
learning_rate -- the learning rate, scalar.
beta1 -- Exponential decay hyperparameter for the first moment estimates
beta2 -- Exponential decay hyperparameter for the second moment estimates
epsilon -- hyperparameter preventing division by zero in Adam updates
Returns:
parameters -- python dictionary containing your updated parameters
v -- Adam variable, moving average of the first gradient, python dictionary
s -- Adam variable, moving average of the squared gradient, python dictionary
"""
L = len(parameters) // 2 # number of layers in the neural networks
v_corrected = {} # Initializing first moment estimate, python dictionary
s_corrected = {} # Initializing second moment estimate, python dictionary
# Perform Adam update on all parameters
for l in range(L):
# Moving average of the gradients. Inputs: "v, grads, beta1". Output: "v".
### START CODE HERE ### (approx. 2 lines)
v["dW" str(l 1)] = beta1*v["dW" str(l 1)] (1-beta1)*grads['dW' str(l 1)]
v["db" str(l 1)] = beta1*v["db" str(l 1)] (1-beta1)*grads['db' str(l 1)]
### END CODE HERE ###
# Compute bias-corrected first moment estimate. Inputs: "v, beta1, t". Output: "v_corrected".
### START CODE HERE ### (approx. 2 lines)
v_corrected["dW" str(l 1)] = v["dW" str(l 1)]/(1-np.power(beta1,t))
v_corrected["db" str(l 1)] = v["db" str(l 1)]/(1-np.power(beta1,t))
### END CODE HERE ###
# Moving average of the squared gradients. Inputs: "s, grads, beta2". Output: "s".
### START CODE HERE ### (approx. 2 lines)
s["dW" str(l 1)] = beta2*s["dW" str(l 1)] (1-beta2)*grads['dW' str(l 1)]**2
s["db" str(l 1)] = beta2*s["db" str(l 1)] (1-beta2)*grads['db' str(l 1)]**2
### END CODE HERE ###
# Compute bias-corrected second raw moment estimate. Inputs: "s, beta2, t". Output: "s_corrected".
### START CODE HERE ### (approx. 2 lines)
s_corrected["dW" str(l 1)] = s["dW" str(l 1)]/(1-np.power(beta2,t))
s_corrected["db" str(l 1)] = s["db" str(l 1)]/(1-np.power(beta2,t))
### END CODE HERE ###
# Update parameters. Inputs: "parameters, learning_rate, v_corrected, s_corrected, epsilon". Output: "parameters".
### START CODE HERE ### (approx. 2 lines)
parameters["W" str(l 1)] = parameters["W" str(l 1)] - learning_rate*v_corrected["dW" str(l 1)]/(np.sqrt(s_corrected["dW" str(l 1)]) epsilon)
parameters["b" str(l 1)] = parameters["b" str(l 1)] - learning_rate*v_corrected["db" str(l 1)]/(np.sqrt(s_corrected["db" str(l 1)]) epsilon)
### END CODE HERE ###
return parameters, v, s
5. 不同优化算法下的模型
数据集:使用以下数据集进行测试
3层神经网络模型:
- Mini-batch Gradient Descent::
使用函数
update_parameters_with_gd()
- Mini-batch Momentum::
使用函数
initialize_velocity()
和update_parameters_with_momentum()
- Mini-batch Adam:
使用函数
initialize_adam()
和update_parameters_with_adam()
def model(X, Y, layers_dims, optimizer, learning_rate = 0.0007, mini_batch_size = 64, beta = 0.9,
beta1 = 0.9, beta2 = 0.999, epsilon = 1e-8, num_epochs = 10000, print_cost = True):
"""
3-layer neural network model which can be run in different optimizer modes.
Arguments:
X -- input data, of shape (2, number of examples)
Y -- true "label" vector (1 for blue dot / 0 for red dot), of shape (1, number of examples)
layers_dims -- python list, containing the size of each layer
learning_rate -- the learning rate, scalar.
mini_batch_size -- the size of a mini batch
beta -- Momentum hyperparameter
beta1 -- Exponential decay hyperparameter for the past gradients estimates
beta2 -- Exponential decay hyperparameter for the past squared gradients estimates
epsilon -- hyperparameter preventing division by zero in Adam updates
num_epochs -- number of epochs
print_cost -- True to print the cost every 1000 epochs
Returns:
parameters -- python dictionary containing your updated parameters
"""
L = len(layers_dims) # number of layers in the neural networks
costs = [] # to keep track of the cost
t = 0 # initializing the counter required for Adam update
seed = 10 # For grading purposes, so that your "random" minibatches are the same as ours
# Initialize parameters
parameters = initialize_parameters(layers_dims)
# Initialize the optimizer
if optimizer == "gd":
pass # no initialization required for gradient descent
elif optimizer == "momentum":
v = initialize_velocity(parameters)
elif optimizer == "adam":
v, s = initialize_adam(parameters)
# Optimization loop
for i in range(num_epochs):
# Define the random minibatches. We increment the seed to reshuffle differently the dataset after each epoch
seed = seed 1
minibatches = random_mini_batches(X, Y, mini_batch_size, seed)
for minibatch in minibatches:
# Select a minibatch
(minibatch_X, minibatch_Y) = minibatch
# Forward propagation
a3, caches = forward_propagation(minibatch_X, parameters)
# Compute cost
cost = compute_cost(a3, minibatch_Y)
# Backward propagation
grads = backward_propagation(minibatch_X, minibatch_Y, caches)
# Update parameters
if optimizer == "gd":
parameters = update_parameters_with_gd(parameters, grads, learning_rate)
elif optimizer == "momentum":
parameters, v = update_parameters_with_momentum(parameters, grads, v, beta, learning_rate)
elif optimizer == "adam":
t = t 1 # Adam counter
parameters, v, s = update_parameters_with_adam(parameters, grads, v, s,
t, learning_rate, beta1, beta2, epsilon)
# Print the cost every 1000 epoch
if print_cost and i % 1000 == 0:
print ("Cost after epoch %i: %f" %(i, cost))
if print_cost and i % 100 == 0:
costs.append(cost)
# plot the cost
plt.plot(costs)
plt.ylabel('cost')
plt.xlabel('epochs (per 100)')
plt.title("Learning rate = " str(learning_rate))
plt.show()
return parameters
5.1 Mini-batch梯度下降
代码语言:javascript复制# train 3-layer model
layers_dims = [train_X.shape[0], 5, 2, 1]
parameters = model(train_X, train_Y, layers_dims, optimizer = "gd")
# Predict
predictions = predict(train_X, train_Y, parameters)
# Plot decision boundary
plt.title("Model with Gradient Descent optimization")
axes = plt.gca()
axes.set_xlim([-1.5,2.5])
axes.set_ylim([-1,1.5])
plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y)
表现:
Accuracy: 0.79 (Mini-batch梯度下降)
5.2 带动量的Mini-batch梯度下降
代码语言:javascript复制# train 3-layer model
layers_dims = [train_X.shape[0], 5, 2, 1]
parameters = model(train_X, train_Y, layers_dims, beta = 0.9, optimizer = "momentum")
# Predict
predictions = predict(train_X, train_Y, parameters)
# Plot decision boundary
plt.title("Model with Momentum optimization")
axes = plt.gca()
axes.set_xlim([-1.5,2.5])
axes.set_ylim([-1,1.5])
plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y)
表现:
Accuracy: 0.79(带动量的Mini-batch梯度下降)
本例子由于太过简单,所以动量的优势没有体现出来,在大的数据集上会较不带动量的模型更好
5.3 带Adam的Mini-batch梯度下降
代码语言:javascript复制# train 3-layer model
layers_dims = [train_X.shape[0], 5, 2, 1]
parameters = model(train_X, train_Y, layers_dims, optimizer = "adam")
# Predict
predictions = predict(train_X, train_Y, parameters)
# Plot decision boundary
plt.title("Model with Adam optimization")
axes = plt.gca()
axes.set_xlim([-1.5,2.5])
axes.set_ylim([-1,1.5])
plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y)
表现:
Accuracy: 0.9366666666666666(带Adam的Mini-batch梯度下降)
5.4 对比总结
优化方法 | 准确率 | cost shape |
---|---|---|
Gradient descent | 79.7% | 振荡(我的结果是光滑) |
Momentum | 79.7% | 振荡 (我的结果是光滑,求指点) |
Adam | 94% | 更光滑 |
- 动量Momentum 通常是有帮助的,但是 较小的学习率 和 过于简单的数据集,优势体现不出来
- Adam,明显优于 mini-batch梯度下降 和 动量
- 如果运行更多的迭代次数,三种方法都会产生非常好的结果。但是 Adam 收敛更快
- Adam优点: 相对较低的内存要求(虽然比 梯度下降 和 动量梯度下降更高) 即使很少调整超参数(除了? 学习率),通常也能很好地工作