Pytorch 自动微分

2021-02-19 15:03:05 浏览数 (1)

参考 http://pytorch123.com/

  • Tensor.requires_grad = True 记录对Tensor的所有操作,后序.backward() 自动计算所有梯度到 .grad 属性
代码语言:javascript复制
import torch
x = torch.ones(2,2, requires_grad=True) # 默认是False
print(x)

tensor([[1., 1.],
        [1., 1.]], requires_grad=True)
  • 停止记录调用.detach()
代码语言:javascript复制
x.detach_()
print(x.requires_grad) # False
  • .grad_fn 保存了创建张量的 Function 的引用
代码语言:javascript复制
x = torch.ones(2,2, requires_grad=True)
y = x   2
print(y)
print(y.grad_fn)

tensor([[3., 3.],
        [3., 3.]], grad_fn=<AddBackward0>)
<AddBackward0 object at 0x0000015716529D68>
代码语言:javascript复制
z = y*y*3
out = z.mean()
print(z, out)

tensor([[27., 27.],
        [27., 27.]], grad_fn=<MulBackward0>) 

tensor(27., grad_fn=<MeanBackward0>)
代码语言:javascript复制
# requires_grad 默认为 False
a = torch.randn(2, 2)
a = ((a*3)/(a-1))
print(a.requires_grad)  # False
b = (a*a).sum()
print(b.grad_fn)  # None

a.requires_grad_(True)  # 设置为 True
print(a.requires_grad)  # True
b = (a*a).sum()
print(b.grad_fn)
# <SumBackward0 object at 0x0000015717DC69E8>
  • backward() 后向传播
代码语言:javascript复制
z = y*y*3
y = x 2
计算 d(out)/dx

o u t = 1 4 ( ∑ 3 ( x i 2 ) 2 ) → d o u t d x i = 3 2 ( x i 2 ) out = frac{1}{4}(sum3(x_i 2)^2) rightarrow frac{d_{out}}{dx_i} = frac{3}{2}(x_i 2) out=41​(∑3(xi​ 2)2)→dxi​dout​​=23​(xi​ 2) x i = 1 , d o u t / d x i = 4.5 x_i = 1, d_{out}/dx_i = 4.5 xi​=1,dout​/dxi​=4.5

代码语言:javascript复制
out.backward()
print(y.grad) # None, 为什么?是 None
print(x.grad)
tensor([[4.5000, 4.5000],
        [4.5000, 4.5000]])

J = ( ∂ y 1 ∂ x 1 ⋯ ∂ y m ∂ x 1 ⋮ ⋱ ⋮ ∂ y 1 ∂ x n ⋯ ∂ y m ∂ x n ) J=left(begin{array}{ccc}frac{partial y_{1}}{partial x_{1}} & cdots & frac{partial y_{m}}{partial x_{1}} \ vdots & ddots & vdots \ frac{partial y_{1}}{partial x_{n}} & cdots & frac{partial y_{m}}{partial x_{n}}end{array}right) J=⎝⎜⎛​∂x1​∂y1​​⋮∂xn​∂y1​​​⋯⋱⋯​∂x1​∂ym​​⋮∂xn​∂ym​​​⎠⎟⎞​

  • 当又使用了一个函数 l = g ( y ) l = g(y) l=g(y),v 是 l l l 对 y y y 的导数,链式求导相乘,得到 l l l 对 x x x 的导数 J ⋅ v = ( ∂ y 1 ∂ x 1 ⋯ ∂ y m ∂ x 1 ⋮ ⋱ ⋮ ∂ y 1 ∂ x n ⋯ ∂ y m ∂ x n ) ( ∂ l ∂ y 1 ⋮ ∂ l ∂ y m ) = ( ∂ l ∂ x 1 ⋮ ∂ l ∂ x n ) J cdot v=left(begin{array}{ccc}frac{partial y_{1}}{partial x_{1}} & cdots & frac{partial y_{m}}{partial x_{1}} \ vdots & ddots & vdots \ frac{partial y_{1}}{partial x_{n}} & cdots & frac{partial y_{m}}{partial x_{n}}end{array}right)left(begin{array}{c}frac{partial l}{partial y_{1}} \ vdots \ frac{partial l}{partial y_{m}}end{array}right)=left(begin{array}{c}frac{partial l}{partial x_{1}} \ vdots \ frac{partial l}{partial x_{n}}end{array}right) J⋅v=⎝⎜⎛​∂x1​∂y1​​⋮∂xn​∂y1​​​⋯⋱⋯​∂x1​∂ym​​⋮∂xn​∂ym​​​⎠⎟⎞​⎝⎜⎛​∂y1​∂l​⋮∂ym​∂l​​⎠⎟⎞​=⎝⎜⎛​∂x1​∂l​⋮∂xn​∂l​​⎠⎟⎞​

上面代码改为:

代码语言:javascript复制
v = torch.tensor(2, dtype=torch.float)
out.backward(v)
print(x.grad)

# 梯度乘以了 2
tensor([[9., 9.],
        [9., 9.]])
  • 评估阶段可以使用 with torch.no_grad(): 不需要梯度计算和更新
代码语言:javascript复制
print(x.requires_grad) # True
print((x ** 2).requires_grad) # True

# 取消梯度记录
with torch.no_grad():
    print((x ** 2).requires_grad) # False

0 人点赞