[Kaggle] Digit Recognizer 手写数字识别(神经网络)

2021-02-19 15:49:01 浏览数 (1)

文章目录

    • 1. baseline
    • 2. 改进
      • 2.1 增加训练时间
      • 2.2 更改网络结构

Digit Recognizer 练习地址

相关博文:

[Hands On ML] 3. 分类(MNIST手写数字预测)

[Kaggle] Digit Recognizer 手写数字识别

1. baseline

  • 导入包
代码语言:javascript复制
import tensorflow as tf
from tensorflow import keras
# import keras
import numpy as np
%matplotlib inline
import matplotlib.pyplot as plt
import pandas as pd

train = pd.read_csv('train.csv')
y_train_full = train['label']
X_train_full = train.drop(['label'], axis=1)
X_test = pd.read_csv('test.csv')
  • 数据维度
代码语言:javascript复制
X_train_full.shape
代码语言:javascript复制
(42000, 784)

42000个训练样本,每个样本 28*28 展平后的像素值 784 个

  • 像素归一化,拆分训练集、验证集
代码语言:javascript复制
X_valid, X_train = X_train_full[:8000] / 255.0, X_train_full[8000:] / 255.0
y_valid, y_train = y_train_full[:8000], y_train_full[8000:]
  • 数据预览
代码语言:javascript复制
from PIL import Image
img = Image.fromarray(np.uint8(np.array(X_train_full)[0].reshape(28,28)))
img.show()
print(np.uint8(np.array(X_train_full)[0].reshape(28,28)))

数字 1 的像素矩阵:

代码语言:javascript复制
[[  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 188 255  94   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 191 250 253  93   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  123 248 253 167  10   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  80  247 253 208  13   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  29 207  253 235  77   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0  54 209 253  253  88   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   0   0  93 254 253 238  170  17   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   0  23 210 254 253 159   0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0  16 209 253 254 240  81   0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0  27 253 253 254  13   0   0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0  20 206 254 254 198   7   0   0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0 168 253 253 196   7   0   0   0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0  20 203 253 248  76   0   0   0   0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0  22 188 253 245  93   0   0   0   0   0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0 103 253 253 191   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0  89 240 253 195  25   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0  15 220 253 253  80   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0  94 253 253 253  94   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0  89 251 253 250 131   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0 214 218  95   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0]
 [  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0]]
  • 添加模型
代码语言:javascript复制
model = keras.models.Sequential()
# model.add(keras.layers.Flatten(input_shape=[784]))
model.add(keras.layers.Dense(300, activation="relu"))
model.add(keras.layers.Dense(100, activation="relu"))
model.add(keras.layers.Dense(10, activation="softmax"))

或者以下写法

代码语言:javascript复制
model = keras.models.Sequential([
# keras.layers.Flatten(input_shape=[784]),
keras.layers.Dense(300, activation="relu"),
keras.layers.Dense(100, activation="relu"),
keras.layers.Dense(10, activation="softmax")
])
  • 定义优化器,配置模型
代码语言:javascript复制
opt = keras.optimizers.Adam(learning_rate=0.001, beta_1=0.9, beta_2=0.999, decay=0.01)
model.compile(loss="sparse_categorical_crossentropy",
              optimizer=opt, metrics=["accuracy"])
  • 训练
代码语言:javascript复制
history = model.fit(X_train, y_train, epochs=30,
                    validation_data=(X_valid, y_valid))
代码语言:javascript复制
...
Epoch 30/30
1063/1063 [==============================] - 2s 2ms/step - 
loss: 0.0927 - accuracy: 0.9748 - 
val_loss: 0.1295 - val_accuracy: 0.9643
  • 模型参数
代码语言:javascript复制
model.summary()

输出:

代码语言:javascript复制
Model: "sequential_5"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
dense_15 (Dense)             (None, 300)               235500    
_________________________________________________________________
dense_16 (Dense)             (None, 100)               30100     
_________________________________________________________________
dense_17 (Dense)             (None, 10)                1010      
=================================================================
Total params: 266,610
Trainable params: 266,610
Non-trainable params: 0
_________________________________________________________________
  • 绘制模型结构
代码语言:javascript复制
from tensorflow.keras.utils import plot_model
plot_model(model, './model.png', show_shapes=True)
  • 绘制训练曲线
代码语言:javascript复制
pd.DataFrame(history.history).plot(figsize=(8, 5))
plt.grid(True)
plt.gca().set_ylim(0, 1) # set the vertical range to [0-1]
plt.show()
  • 对测试集预测
代码语言:javascript复制
y_pred = model.predict(X_test)
pred = y_pred.argmax(axis=1).reshape(-1)
print(pred.shape)

image_id = pd.Series(range(1,len(pred) 1))
output = pd.DataFrame({'ImageId':image_id, 'Label':pred})
output.to_csv("submission_svc.csv",  index=False)

得分 : 0.95989

2. 改进

根据上面的准确率:

代码语言:javascript复制
...
Epoch 30/30
1063/1063 [==============================] - 2s 2ms/step - 
loss: 0.0927 - accuracy: 0.9748 - 
val_loss: 0.1295 - val_accuracy: 0.9643

人类的准确率几乎是100%,我们的训练集准确率 97.48%,验证集准确率 96.43%,我们的模型存在高偏差

参考, 超参数调试、正则化以及优化:https://cloud.tencent.com/developer/article/1788349

怎么办?

2.1 增加训练时间

训练次数更改为 epochs=100

代码语言:javascript复制
...
Epoch 100/100
1063/1063 [==============================] - 2s 2ms/step - 
loss: 0.0751 - accuracy: 0.9798 - 
val_loss: 0.1194 - val_accuracy: 0.9661

得分 : 0.96296,比上面好 0.307%

2.2 更改网络结构

  • 添加隐藏层
代码语言:javascript复制
model = keras.models.Sequential()
model.add(keras.layers.Dense(300, activation="relu"))
model.add(keras.layers.Dense(100, activation="relu"))
model.add(keras.layers.Dense(100, activation="relu")) # 增加一层
model.add(keras.layers.Dense(10, activation="softmax"))
代码语言:javascript复制
Epoch 100/100
1063/1063 [==============================] - 2s 2ms/step - 
loss: 0.0585 - accuracy: 0.9847 - 
val_loss: 0.1114 - val_accuracy: 0.9672

得分 : 0.96546,比上面好 0.25%

  • 再添加隐藏层
代码语言:javascript复制
model = keras.models.Sequential()
model.add(keras.layers.Dense(300, activation="relu"))
model.add(keras.layers.Dense(100, activation="relu"))
model.add(keras.layers.Dense(100, activation="relu")) # 增加一层
model.add(keras.layers.Dense(50, activation="relu")) # 增加一层
model.add(keras.layers.Dense(10, activation="softmax"))
代码语言:javascript复制
Epoch 100/100
1063/1063 [==============================] - 2s 2ms/step - 
loss: 0.0544 - accuracy: 0.9860 - 
val_loss: 0.1039 - val_accuracy: 0.9700

得分 : 0.96578,比上面好 0.032%

  • 增加隐藏单元数量、使用 batch_size = 128、训练250轮
代码语言:javascript复制
DROP_OUT = 0.3
model = keras.models.Sequential()
model.add(keras.layers.Dense(500, activation="relu"))
model.add(keras.layers.Dense(500, activation="relu"))
model.add(keras.layers.Dense(500, activation="relu"))
model.add(keras.layers.Dense(500, activation="relu"))
model.add(keras.layers.Dense(10, activation="softmax"))
代码语言:javascript复制
history = model.fit(X_train, y_train, epochs=250, batch_size=128,
                    validation_data=(X_valid, y_valid))
代码语言:javascript复制
Epoch 250/250
266/266 [==============================] - 3s 10ms/step - 
loss: 9.7622e-08 - accuracy: 1.0000 - 
val_loss: 0.2358 - val_accuracy: 0.9766

得分 : 0.97442,比上面好 0.864%

  • 使用 dropout 随机使一些神经元失效,是一种正则化方法
代码语言:javascript复制
DROP_OUT = 0.3
model = keras.models.Sequential()
model.add(keras.layers.Dense(500, activation="relu"))
model.add(keras.layers.Dropout(DROP_OUT)) # dropout 正则化
model.add(keras.layers.Dense(500, activation="relu"))
model.add(keras.layers.Dropout(DROP_OUT))
model.add(keras.layers.Dense(500, activation="relu"))
model.add(keras.layers.Dropout(DROP_OUT))
model.add(keras.layers.Dense(500, activation="relu"))
model.add(keras.layers.Dropout(DROP_OUT))
model.add(keras.layers.Dense(10, activation="softmax"))
代码语言:javascript复制
history = model.fit(X_train, y_train, epochs=250, batch_size=128,
                    validation_data=(X_valid, y_valid))
代码语言:javascript复制
Epoch 250/250
266/266 [==============================] - 4s 16ms/step - 
loss: 0.0171 - accuracy: 0.9940 - 
val_loss: 0.0928 - val_accuracy: 0.9779

得分 : 0.97546,比上面好 0.104%

  • 实验对比汇总:

模型/准确率(%)

训练集

验证集

测试集

简单模型

97.48

96.43

95.989

增加训练次数

97.98

96.61

96.296( 0.307%)

增加隐藏层

98.47

96.72

96.546( 0.25%)

再增加隐藏层

98.60

97.00

96.578( 0.032%)

增加隐藏单元数量、batch_size = 128、训练250轮

100

97.66

97.442( 0.864%)

使用 dropout 随机失活(正则化)

99.40

97.79

97.546( 0.104%)

目前最好得分,可以在 kaggle 排到1597名。

0 人点赞