这个问题可以扩展到很多相似的问题:连续几个月充值会员、连续天数有商品卖出、连续打车、连续逾期……
数据提供
代码语言:javascript复制 用户ID、登入日期
user01,2018-02-28
user01,2018-03-01
user01,2018-03-02
user01,2018-03-04
user01,2018-03-05
user01,2018-03-06
user01,2018-03-07
user02,2018-03-01
user02,2018-03-02
user02,2018-03-03
user02,2018-03-06
输出字段
代码语言:javascript复制 --------- -------- ------------- ------------- --
| uid | times | start_date | end_date |
--------- -------- ------------- ------------- --
解法一
先对每个用户的登录日期排序,然后拿第n行的日期,减第n-2行的日期,如果等于2,就说明连续三天登录了。
解法二
开窗,窗囗内部排序然后做差
代码语言:javascript复制rownumber() oover
建表
代码语言:javascript复制create table wedw_dw.t_login_info(
user_id string COMMENT '用户ID'
,login_date date COMMENT '登录日期'
)
row format delimited fields terminated by ',';
导数据
代码语言:javascript复制hdfs dfs -put /test/login.txt /data/hive/test/wedw/dw/t_login_info/
验证数据
代码语言:javascript复制select * from wedw_dw.t_login_info;
---------- ------------- --
| user_id | login_date |
---------- ------------- --
| user01 | 2018-02-28 |
| user01 | 2018-03-01 |
| user01 | 2018-03-02 |
| user01 | 2018-03-04 |
| user01 | 2018-03-05 |
| user01 | 2018-03-06 |
| user01 | 2018-03-07 |
| user02 | 2018-03-01 |
| user02 | 2018-03-02 |
| user02 | 2018-03-03 |
| user02 | 2018-03-06 |
---------- ------------- --
解决方案-使用解法二
代码语言:javascript复制select
t2.user_id as user_id,
count(1) as times,
min(t2.login_date) as start_date,
max(t2.login_date) as end_date
from
(
select
t1.user_id,
t1.login_date,
date_sub(t1.login_date,rn) as date_diff
from
(
select
user_id,
login_date,
row_number() over(partition by user_id order by login_date asc) as rn
from
wedw_dw.t_login_info
) t1
) t2
group by
t2.user_id, t2.date_diff
having times >= 3;
结果
代码语言:javascript复制 ---------- -------- ------------- ------------- --
| user_id | times | start_date | end_date |
---------- -------- ------------- ------------- --
| user01 | 3 | 2018-02-28 | 2018-03-02 |
| user01 | 4 | 2018-03-04 | 2018-03-07 |
| user02 | 3 | 2018-03-01 | 2018-03-03 |
---------- -------- ------------- ------------- --
思路
- 先把数据按照用户id分组,根据登录日期排序
select
user_id
,login_date
,row_number() over(partition by user_id order by login_date asc) as rn
from
wedw_dw.t_login_info
---------- ------------- ----- --
| user_id | login_date | rn |
---------- ------------- ----- --
| user01 | 2018-02-28 | 1 |
| user01 | 2018-03-01 | 2 |
| user01 | 2018-03-02 | 3 |
| user01 | 2018-03-04 | 4 |
| user01 | 2018-03-05 | 5 |
| user01 | 2018-03-06 | 6 |
| user01 | 2018-03-07 | 7 |
| user02 | 2018-03-01 | 1 |
| user02 | 2018-03-02 | 2 |
| user02 | 2018-03-03 | 3 |
| user02 | 2018-03-06 | 4 |
---------- ------------- ----- --
- 用登录日期减去排序数字rn,得到的差值日期如果是相等的,则说明这两天肯定是连续的
select
t1.user_id
,t1.login_date
,date_sub(t1.login_date,rn) as date_diff
from
(
select
user_id
,login_date
,row_number() over(partition by user_id order by login_date asc) as rn
from
wedw_dw.t_login_info
) t1
;
---------- ------------- ------------- --
| user_id | login_date | date_diff |
---------- ------------- ------------- --
| user01 | 2018-02-28 | 2018-02-27 |
| user01 | 2018-03-01 | 2018-02-27 |
| user01 | 2018-03-02 | 2018-02-27 |
| user01 | 2018-03-04 | 2018-02-28 |
| user01 | 2018-03-05 | 2018-02-28 |
| user01 | 2018-03-06 | 2018-02-28 |
| user01 | 2018-03-07 | 2018-02-28 |
| user02 | 2018-03-01 | 2018-02-28 |
| user02 | 2018-03-02 | 2018-02-28 |
| user02 | 2018-03-03 | 2018-02-28 |
| user02 | 2018-03-06 | 2018-03-02 |
---------- ------------- ------------- --
- 根据user_id和日期差date_diff 分组,最小登录日期即为此次连续登录的开始日期start_date,最大登录日期即为结束日期end_date,登录次数即为分组后的count(1)
select
t2.user_id as user_id
,count(1) as times
,min(t2.login_date) as start_date
,max(t2.login_date) as end_date
from
(
select
t1.user_id
,t1.login_date
,date_sub(t1.login_date,rn) as date_diff
from
(
select
user_id
,login_date
,row_number() over(partition by user_id order by login_date asc) as rn
from
wedw_dw.t_login_info
) t1
) t2
group by
t2.user_id
,t2.date_diff
having times >= 3
;
---------- -------- ------------- ------------- --
| user_id | times | start_date | end_date |
---------- -------- ------------- ------------- --
| user01 | 3 | 2018-02-28 | 2018-03-02 |
| user01 | 4 | 2018-03-04 | 2018-03-07 |
| user02 | 3 | 2018-03-01 | 2018-03-03 |
---------- -------- ------------- ------------- --