本文中介绍的是利用plotly_express
绘制散点图,使用的是scatter()
方法。
With
px.scatter
, each data point is represented as a marker point, whose location is given by thex
andy
columns.
- 通过
plotly_express
库来实现 - 通过
plotly.graph_objects
实现
1 基于px的散点图
1.1 模拟数据
直接将数据传进来
代码语言:javascript复制import plotly_express as px
import pandas as pd
import numpy as np
px.scatter(x=[1,2,6,7,9,8,3,4,5],y=[2,14,12,24,36,8,25,7,18])
1.2 内置数据gapminder
1.3 内置数据iris
代码语言:javascript复制df = px.data.iris()
fig = px.scatter(
df,
x="sepal_width",
y="sepal_length", # 绘图的数据及xy轴
color="species", # 点的颜色
size='petal_length', # 点的大小
hover_data=['petal_width'] # 悬停显示的数据
)
fig.show()
1.4 连续型的点图line-scatter
连续型的点图,比如:三角函数的图形、线性图形等
代码语言:javascript复制x = np.linspace(0,10,100) # 0-10的100个数
y = np.sin(x)
px.line(x=x,y=y,labels={"x":"t","y":"sin(t)"})
2 基于go.Scatter的散点图
2.1 demo
go.Figure
确定画布go.Scatter
画图,传入需要的数据
t = np.linspace(0, 10, 50)
y = np.sin(t)
fig = go.Figure(data=go.Scatter(x=t, y=y, mode="markers"))
fig.show()
2.2 子图制作
在一个画布figure
中画多个图
go.figure
确定画布go.add_trace()
:将不同的图形画在一个画布上fig.show()
:显示图形
np.random.seed(2)
N = 100
random_x = np.linspace(0, 1, N)
random_y0 = np.random.randn(N) 8
random_y1 = np.random.randn(N)
random_y2 = np.random.randn(N) - 8
random_y3 = np.random.randn(N) - 4
fig = go.Figure()
# add traces
fig.add_trace(go.Scatter(x=random_x,y=random_y0,
mode="markers",name="markers"))
fig.add_trace(go.Scatter(x=random_x, y=random_y1,
mode='lines markers',name='lines markers'))
fig.add_trace(go.Scatter(x=random_x, y=random_y2,
mode='lines',name='lines'))
fig.add_trace(go.Scatter(x=random_x, y=random_y3,
mode='markers',name='markers'))
fig.show()
2.3 冒泡散点-bubble scatter
冒泡散点图:随着坐标轴数值的变化,点的大小随着变化
代码语言:javascript复制fig = go.Figure(go.Scatter(
x=np.linspace(0,50,10),
y=np.random.randint(0,50,10),
mode="markers",
marker=dict(size=np.random.randint(0,50,10), # 通过字典的形式来实现
color=np.random.randint(50,100,10))
))
fig.show()
代码语言:javascript复制t = np.linspace(0, 10, 100)
fig = go.Figure()
fig.add_trace(go.Scatter(
x=t, y=np.sin(t),
name='sin',
mode='markers',
marker_color='rgba(20, 180, 60, .8)'
))
fig.add_trace(go.Scatter(
x=t, y=np.cos(t),
name='cos',
mode='markers',
marker_color='rgba(25, 182, 193, .9)'
))
# fig.update_traces(mode='markers', marker_line_width=2, marker_size=10)
fig.update_layout(title='Styled Scatter', # 标题
yaxis_zeroline=False, xaxis_zeroline=False)
fig.show()
代码语言:javascript复制t = np.linspace(0, 10, 100)
fig = go.Figure()
fig.add_trace(go.Scatter(
x=t, y=np.sin(t),
name='sin',
mode='markers',
marker_color='rgba(20, 180, 60, .8)'
))
fig.add_trace(go.Scatter(
x=t, y=np.cos(t),
name='cos',
mode='lines',
marker_color='rgba(25, 182, 193, .9)'
))
# Set options common to all traces with fig.update_traces
# 设置整个散点图的大小和间隔
fig.update_traces(mode='markers', marker_line_width=2, marker_size=8)
fig.update_layout(title='Styled Scatter',
yaxis_zeroline=True, xaxis_zeroline=False)
fig.show()
2.4 数据悬停Data Labels on Hover
在使用go.Scatter的时候,如何实现悬停时候数据的显示
代码语言:javascript复制df = px.data.iris()
fig = go.Figure(data = go.Scatter( # Figure类中的第一个属性是data
x=df["sepal_length"], # xy坐标轴的数据
y=df["sepal_width"],
mode="markers", # 点的表示
marker_color=df["species_id"], # 点的颜色,px中是color
text=df["species"])) # 悬停的显示,px中是hove_data
fig.show()
2.5 Scatter with a Color Dimension
指的是在图形右边实现颜色的不断变化
代码语言:javascript复制x = np.linspace(0,10,500)
y = np.random.randint(0,100,500)
fig = go.Figure(data=go.Scatter(
x=x,
y=y,
mode="markers",
marker=dict( # marker是字典的形式
size=20,
color=np.random.randint(0,100,500), # 指定颜色区间
colorscale="Viridis", # 选择哪种颜色
showscale=True # 右边的颜色尺度尺是否显示
)
))
fig.show()
默认的颜色
代码语言:javascript复制x = np.linspace(0,10,500)
y = np.random.randint(0,100,500)
fig = go.Figure(data=go.Scatter(
x=x,
y=y,
mode="markers",
marker=dict( # marker是字典的形式
size=20,
color=np.random.randint(0,100,500),
showscale=True
)
))
fig.show()