DCS系统里架设GPS北斗卫星同步时钟介绍
GPS北斗卫星同步时钟系统是公司在时钟同步领域经十几年的研究和开发经验,为用户提供的一套全面、精准的数据机房时间统一解决方案。其针对广大工业自动化、金融、电信、交通、医疗系统、公安、气象等公众部门对时间统一系统网络化、城际化的要求,从保障信息系统安全的角度考虑,利用当前最先进的电路集成、软件编程技术,结合中国北斗、米国GPS卫星系统与网络PTP、NTP的技术特点,实现了以卫星、上级PTP/NTP时间为UTC基准源,支持标准的NTP、SNTP和PTP网络对时、串口授时、1PPS脉冲信号输出,干接点报警信号输出,采用安全的MD5协议和证书加密方式,具有完整的日志记录功能和USB端口下载功能。
时钟同步系统主要采用了HR系列网络时间服务器作为主单元,其采用PTP/NTP/GPS/北斗/CDMA/B码/OCXO/原子钟等多模授时发送的秒同步信号和时间信息,向各种计算机系统和自动化装置提供精确的时间信息和时间同步信号。该产品系统整体功耗小,采用无风扇设计,运行可靠稳定,完全满足《国家电网统一时钟系统技术规范》、《上海电网GPS时间同步系统技术原则和运行管理规定》和《电力系统时间同步技术规范》的各种要求,特别适用于分布在不同地点不同系统的统一授时,为计算机网络、计算机应用系统、流程控制管理系统、电子商务系统、网上B2B系统以及数据库的保存及维护需要提供精密的标准时间信号和时间戳服务。产品自推出市场以来,经受了众多的现场运行考验,得到广大用户的认可与信赖,已经被成功应用于政府金融、移动通信、公安、石油、电力、交通、以及国防等领域。
主时钟源
同步网络通常都会有一个主时钟,它的来源一般都是协调世界时(UTC),UTC是基于地球的自转而确立的公立时间。UTC与国际原子时(TAI)保持着固定的关系,两者之间的固定关系是根据地球自转减慢的速度而周期性的增加到UTC上的闰秒时间而保持的,目前UTC时间比TAI时间快了将近36秒。另一个度量标准是UT1,它是以平子夜作为0时开始的格林格林威治平太阳时加上人工极移校正后的时间标准,UTC与UT1之间的关系保持在9秒以内。
目前有很多个时间服务器,但是在美国最常用的就是来自国家科学技术研究所(NIST)提供的时间,NIST提供的时间是基于UTC、UTC1和网络时间协议(NTP)服务器的,其他网络的计算机和主时钟源都是根据这个服务器来确定的,然而还有很多的辅助服务器存在,而且时间信息也可以来自于导航卫星。
时间研究要素
在网络设计中存在异步和同步的时间模型,所有同步的方法都需要有一个内聚层次的定时解决方案。参考时钟对于网络元素的同步是必须的,网络元素通常需要一个电压控制的晶体振荡器(VCXO)、锁相环(PLL)或者时钟生成器通过调整实现同步状态。目前比较流行的方案包括Abracon公司推出的超低相位噪声的VXCO和IDT公司推出的82P33814-1NLG同步管理单元,支持多种同步模式。
无论选择哪种解决方案,设计系统都需要能够提供适当的抖动衰减和相位噪声剔除,并且与网络中的其他元素保持适当的同步公差。时间设计方面要包括一定的保持特性,即在被通知同步状态之前保持时钟的能力以防止主时钟或参考时钟出现故障。
常用的同步解决方案
网络时间协议(NTP)和精简网络时间协议(SNTP)
最常用的公共网络时间同步方法就是NTP以及其精简版SNTP,公共的NTP子网在所有大陆甚至在海底都设有服务器,为全球互联网上无数的计算机提供时间支持服务。NTP服务器时间是基于UTC的,但是NIST组织架设了一个基于UT1的NTP服务器。
NTP协议使用软件时间戳来实现精确的时间同步,精度范围从100µs 到100ms 或者更大。很多因素会导致差异,但是通常都是由于网络延迟、硬件、操作系统、环境温度变化引起的振荡器漂移以及时间更新引起的时间间隔引起的。
当我们确定需要对客户端的本地时间进行调整时,还需要将往返时间延迟考虑在内。NTP和SNTP使用相同的过程来确定校正因子,计算结果是假设往返两方向的延迟都是相同的而确定的,因此在客户端与服务端之间一共发生了四个数据包交换。
NTP和SNTP之间的主要区别是SNTP客户端需要周期性的直接从单个SNTP服务器同步它们的时间,因此,SNTP主要用于不需要太高精度要求的应用程序,NTP则采用基于状态的复杂算法来提升精度。