LinearRegression

2021-03-02 15:17:09 浏览数 (1)

线性回归法

思想
  • 解决回归问题
  • 算法可解释性强
  • 一般在坐标轴中:横轴是特征(属性),纵坐标为预测的结果,输出标记(具体数值)
和分类问题的区别

分类问题中,横轴和纵轴都是样本特征属性(肿瘤大小,肿瘤发现时间)

回归问题中,横轴样本点(房子大小,地段等),纵轴是预测值(房价)

问题产生
  • 求解出拟合的直线y=ax b
  • 根据样本点x^{(i)},求解预测值hat y^{(i)}
  • 求解真实值和预测值的差距尽量小 ,通常用差的平方和最小表示,损失函数为:
mathop {min}sum ^{m}_{i=1} (y^{(i)}-{hat {y{(i)}}})2
mathop {min}sum ^{m}_{i=1} ({y{i}-ax{(i)}-b})^2
  • 上面的损失函数loss function实际上就是求解a,b

最小二乘法求解$a,b$

的过程:

J(a,b) = mathop {min}sum ^{m}_{i=1} ({y{i}-ax{(i)}-b})^2

分别对

  • 先对b求导
  • 对a求导:

a的另一种表示形式:

向量化过程

向量化主要是针对a的式子来进行改进,将:分子看做w{(i)},v{(i)},分母看做w{(i)},w{(i)}

代码语言:javascript复制
import numpy as np

class SimpleLinearRegression1(object):
    def __init__(self):
        # ab不是用户送进来的参数,相当于是私有的属性
        self.a_ = None
        self.b_ = None
    
    def fit(self, x_train,y_train):
        # fit函数:根据训练数据集来得到模型
        assert x_train.ndim == 1, 
            "simple linear regression can only solve single feature training data"
        assert len(x_train) == len(y_train), 
            "the size of x_train must be equal to the size of y_train"

        x_mean = np.mean(x_train)
        y_mean = np.mean(y_train)

        num = 0.0
        d = 0.0
        for x, y in zip(x_train, y_train):
            num  = (x - x_mean) * (y - y_mean)
            d  = (x - x_mean) ** 2
        
        self.a_ = num / d
        self.b_ = y_mean - self.a_ * x_mean
        
        # 返回自身,sklearn对fit函数的规范
        return self
    
    def predict(self, x_predict):
        # 传进来的是待预测的x 
        assert x_predict.ndim == 1, 
            "simple linear regression can only solve single feature training data"
        assert self.a_ is not None and self.b_ is not None, 
            "must fit before predict!"
            
        return np.array([self._predict(x) for x in x_predict])
    
    def _predict(self, x_single):
        # 对一个数据进行预测 
        return self.a_ * x_single   self.b_
    
    def __repr__(self):
        # 字符串输出
        return "SimpleLinearRegression1()"
    
  
 # 通过向量化实现
class SimpleLinearRegression2(object):
    def __init__(self):
        # a, b不是用户送进来的参数,相当于是私有的属性
        self.a_ = None
        self.b_ = None
    
    def fit(self, x_train, y_train):
        # fit函数:根据训练数据集来得到模型
        assert x_train.ndim == 1, 
            "simple linear regression can only solve single feature training data"
        assert len(x_train) == len(y_train), 
            "the size of x_train must be equal to the size of y_train"

        x_mean = np.mean(x_train)
        y_mean = np.mean(y_train)
        
        #  改成向量形式代替for循环,numpy中的.dot形式
        #  参考上面的向量化公式 
        num = (x_train - x_mean).dot(y_train - y_mean)
        d = (x_train - x_mean).dot(x_train - x_mean)
        
        self.a_ = num / d
        self.b_ = y_mean - self.a_ * x_mean
        
        # 返回自身,sklearn对fit函数的规范
        return self
    
    def predict(self, x_predict):
        # 传进来的是待预测的x 
        assert x_predict.ndim == 1, 
            "simple linear regression can only solve single feature training data"
        assert self.a_ is not None and self.b_ is not None, 
            "must fit before predict!"
            
        return np.array([self._predict(x) for x in x_predict])
    
    def _predict(self, x_single):
        # 对一个数据进行预测 
        return self.a_ * x_single   self.b_
    
    def __repr__(self):
        # 字符串函数,输出方便进行查看
        return "SimpleLinearRegression2()"

衡量标准

衡量标准:将数据分成训练数据集train和测试数据集test,通过训练数据集得到a和b,再通过测试数据集进行衡量

  • 均方误差MSE,mean squared error,存在量纲问题
MSE=frac {1}{m}sum {m}_{i=1}(y{(i)}_{test}-hat y{(i)}_{test})2
  • 均方根误差RMSE,root mean squared error
RMSE=sqrt{MSE_{test}}=sqrt {frac {1}{m}sum {m}_{i=1}(y{(i)}_{test}-hat y{(i)}_{test})2}
  • 平均绝对误差MAE,mean absolute error,
MAE=frac {1}{m}sum{m}_{i=1}|y{(i)}{test}-hat y^{(i)}{test}|

sklearn中没有RMSE,只有MAE、MSE

代码语言:javascript复制
import numpy as np
from math import sqrt


def accuracy_score(y_true, y_predict):
    '''准确率的封装:计算y_true和y_predict之间的准确率'''
    assert y_true.shape[0] == y_predict.shape[0], 
    "the size of y_true must be equal to the size of y_predict"

    return sum(y_true ==y_predict) / len(y_true)


def mean_squared_error(y_true, y_predict):
    # 计算y_true 和 y_predict之间的MSE
    assert len(y_true) == len(y_predict), 
        "the size of y_true must be equal to the size of y_predict"
    return np.sum((y_true - y_predict)**2) / len(y_true)


def root_mean_squared_error(y_true, y_predict):
    # 计算y_true 和 y_predict之间的RMSE
    return sqrt(mean_squared_error(y_true, y_predict))


def mean_absolute_error(y_true, y_predict):
    # 计算y_true 和 y_predict之间的MAE
    assert len(y_true) == len(y_predict), 
        "the size of y_true must be equal to the size of y_predict"
    
    return np.sum(np.absolute(y_true - y_predict)) / len(y_true)

$R^2$指标

指标的定义为

R^2=1- frac {SS_{residual}}{SS_{total}}
R^2=1-frac {sum_i{(hat y{(i)}-y{(i)}})^2}{sum_i{(bar y-y{(i)}})2}

分子为模型预测产生的误差;分母为使用均值产生的误差(baseline model产生的误差)

式子表示为:预测模型没有产生误差的指标

  • R^2 leq 1
  • R2越小越好。R2最大值为1,此时预测模型不犯误差。模型等于基准模型时,R^2为0
  • R^2小于0,此时学习到的模型还不如基准模型,说明数据可能不存在线性关系
  • R^2的另一种表示为

多元线性回归

将特征数从1拓展到了N,求解思路和一元线性回归类似。

目标函数

0 人点赞