R海拾遗-tidyverse

2020-09-15 15:40:16 浏览数 (1)

数据框操作总结

sunqi
2020/7/28

概述

基于tidyverse,这个包//包含tidyr

选取列

代码语言:javascript复制
rm(list=ls())
library(tidyverse)
代码语言:javascript复制
## -- Attaching packages ------------------------------------------------------------- tidyverse 1.3.0 --
代码语言:javascript复制
## √ ggplot2 3.3.2     √ purrr   0.3.4
## √ tibble  3.0.3     √ dplyr   1.0.0
## √ tidyr   1.1.0     √ stringr 1.4.0
## √ readr   1.3.1     √ forcats 0.5.0
代码语言:javascript复制
## -- Conflicts ---------------------------------------------------------------- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
代码语言:javascript复制
# 建立测试数据集
my_data <- as_tibble(iris)
my_data %>% head()
代码语言:javascript复制
## # A tibble: 6 x 5
##   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
##          <dbl>       <dbl>        <dbl>       <dbl> <fct>
## 1          5.1         3.5          1.4         0.2 setosa
## 2          4.9         3            1.4         0.2 setosa
## 3          4.7         3.2          1.3         0.2 setosa
## 4          4.6         3.1          1.5         0.2 setosa
## 5          5           3.6          1.4         0.2 setosa
## 6          5.4         3.9          1.7         0.4 setosa
代码语言:javascript复制
# 根据名字选取列
# pull函数返回的为向量
my_data %>% pull(Species)%>% head()
代码语言:javascript复制
## [1] setosa setosa setosa setosa setosa setosa
## Levels: setosa versicolor virginica
代码语言:javascript复制
# select
# 根据行号
my_data %>% select(1:3)%>% head()
代码语言:javascript复制
## # A tibble: 6 x 3
##   Sepal.Length Sepal.Width Petal.Length
##          <dbl>       <dbl>        <dbl>
## 1          5.1         3.5          1.4
## 2          4.9         3            1.4
## 3          4.7         3.2          1.3
## 4          4.6         3.1          1.5
## 5          5           3.6          1.4
## 6          5.4         3.9          1.7
代码语言:javascript复制
# 根据列名
my_data %>% select(Sepal.Length, Petal.Length)%>% head()
代码语言:javascript复制
## # A tibble: 6 x 2
##   Sepal.Length Petal.Length
##          <dbl>        <dbl>
## 1          5.1          1.4
## 2          4.9          1.4
## 3          4.7          1.3
## 4          4.6          1.5
## 5          5            1.4
## 6          5.4          1.7
代码语言:javascript复制
# 列名从开始到结束
my_data %>% select(Sepal.Length:Petal.Length)%>% head()
代码语言:javascript复制
## # A tibble: 6 x 3
##   Sepal.Length Sepal.Width Petal.Length
##          <dbl>       <dbl>        <dbl>
## 1          5.1         3.5          1.4
## 2          4.9         3            1.4
## 3          4.7         3.2          1.3
## 4          4.6         3.1          1.5
## 5          5           3.6          1.4
## 6          5.4         3.9          1.7
代码语言:javascript复制
# 名字开头含Petal
my_data %>% select(starts_with("Petal"))%>% head()
代码语言:javascript复制
## # A tibble: 6 x 2
##   Petal.Length Petal.Width
##          <dbl>       <dbl>
## 1          1.4         0.2
## 2          1.4         0.2
## 3          1.3         0.2
## 4          1.5         0.2
## 5          1.4         0.2
## 6          1.7         0.4
代码语言:javascript复制
# 名字结尾含Width
my_data %>% select(ends_with("Width")) %>% head()
代码语言:javascript复制
## # A tibble: 6 x 2
##   Sepal.Width Petal.Width
##         <dbl>       <dbl>
## 1         3.5         0.2
## 2         3           0.2
## 3         3.2         0.2
## 4         3.1         0.2
## 5         3.6         0.2
## 6         3.9         0.4
代码语言:javascript复制
# 名字含有etal
my_data %>% select(contains("etal")) %>% head()
代码语言:javascript复制
## # A tibble: 6 x 2
##   Petal.Length Petal.Width
##          <dbl>       <dbl>
## 1          1.4         0.2
## 2          1.4         0.2
## 3          1.3         0.2
## 4          1.5         0.2
## 5          1.4         0.2
## 6          1.7         0.4
代码语言:javascript复制
# 正则表达式
my_data %>% select(matches(".t.")) %>% head()
代码语言:javascript复制
## # A tibble: 6 x 4
##   Sepal.Length Sepal.Width Petal.Length Petal.Width
##          <dbl>       <dbl>        <dbl>       <dbl>
## 1          5.1         3.5          1.4         0.2
## 2          4.9         3            1.4         0.2
## 3          4.7         3.2          1.3         0.2
## 4          4.6         3.1          1.5         0.2
## 5          5           3.6          1.4         0.2
## 6          5.4         3.9          1.7         0.4
代码语言:javascript复制
# 使用字符串
my_data %>% select(one_of(c("Sepal.Length", "Petal.Length"))) %>% head()
代码语言:javascript复制
## # A tibble: 6 x 2
##   Sepal.Length Petal.Length
##          <dbl>        <dbl>
## 1          5.1          1.4
## 2          4.9          1.4
## 3          4.7          1.3
## 4          4.6          1.5
## 5          5            1.4
## 6          5.4          1.7
代码语言:javascript复制
# 根据条件选取
my_data %>% select_if(is.numeric) %>% head()
代码语言:javascript复制
## # A tibble: 6 x 4
##   Sepal.Length Sepal.Width Petal.Length Petal.Width
##          <dbl>       <dbl>        <dbl>       <dbl>
## 1          5.1         3.5          1.4         0.2
## 2          4.9         3            1.4         0.2
## 3          4.7         3.2          1.3         0.2
## 4          4.6         3.1          1.5         0.2
## 5          5           3.6          1.4         0.2
## 6          5.4         3.9          1.7         0.4
代码语言:javascript复制
# 移除列,同时语法支持列号
my_data %>% select(-Sepal.Length, -Petal.Length)%>% head()
代码语言:javascript复制
## # A tibble: 6 x 3
##   Sepal.Width Petal.Width Species
##         <dbl>       <dbl> <fct>
## 1         3.5         0.2 setosa
## 2         3           0.2 setosa
## 3         3.2         0.2 setosa
## 4         3.1         0.2 setosa
## 5         3.6         0.2 setosa
## 6         3.9         0.4 setosa
代码语言:javascript复制
my_data %>% select(-(Sepal.Length:Petal.Length)) %>% head()
代码语言:javascript复制
## # A tibble: 6 x 2
##   Petal.Width Species
##         <dbl> <fct>
## 1         0.2 setosa
## 2         0.2 setosa
## 3         0.2 setosa
## 4         0.2 setosa
## 5         0.2 setosa
## 6         0.4 setosa

行选择

代码语言:javascript复制
# 切片
my_data %>% slice(1:6)
代码语言:javascript复制
## # A tibble: 6 x 5
##   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
##          <dbl>       <dbl>        <dbl>       <dbl> <fct>
## 1          5.1         3.5          1.4         0.2 setosa
## 2          4.9         3            1.4         0.2 setosa
## 3          4.7         3.2          1.3         0.2 setosa
## 4          4.6         3.1          1.5         0.2 setosa
## 5          5           3.6          1.4         0.2 setosa
## 6          5.4         3.9          1.7         0.4 setosa
代码语言:javascript复制
# filter根据条件
my_data %>% filter(Sepal.Length > 7) %>% head()
代码语言:javascript复制
## # A tibble: 6 x 5
##   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
##          <dbl>       <dbl>        <dbl>       <dbl> <fct>
## 1          7.1         3            5.9         2.1 virginica
## 2          7.6         3            6.6         2.1 virginica
## 3          7.3         2.9          6.3         1.8 virginica
## 4          7.2         3.6          6.1         2.5 virginica
## 5          7.7         3.8          6.7         2.2 virginica
## 6          7.7         2.6          6.9         2.3 virginica
代码语言:javascript复制
# 多个条件
my_data %>% filter(Sepal.Length > 6.7, Sepal.Width <= 3) %>% head()
代码语言:javascript复制
## # A tibble: 6 x 5
##   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
##          <dbl>       <dbl>        <dbl>       <dbl> <fct>
## 1          6.8         2.8          4.8         1.4 versicolor
## 2          7.1         3            5.9         2.1 virginica
## 3          7.6         3            6.6         2.1 virginica
## 4          7.3         2.9          6.3         1.8 virginica
## 5          6.8         3            5.5         2.1 virginica
## 6          7.7         2.6          6.9         2.3 virginica
代码语言:javascript复制
# 对所有列筛选
# 去掉没用的
my_data2 <- my_data %>% select(-Species)

# 对所有的列进行筛选
my_data2 %>% filter_all(all_vars(.> 2.4)) %>% head()
代码语言:javascript复制
## # A tibble: 3 x 4
##   Sepal.Length Sepal.Width Petal.Length Petal.Width
##          <dbl>       <dbl>        <dbl>       <dbl>
## 1          6.3         3.3          6           2.5
## 2          7.2         3.6          6.1         2.5
## 3          6.7         3.3          5.7         2.5
代码语言:javascript复制
# 任意一个大于
my_data2 %>% filter_all(any_vars(.> 2.4)) %>% head()
代码语言:javascript复制
## # A tibble: 6 x 4
##   Sepal.Length Sepal.Width Petal.Length Petal.Width
##          <dbl>       <dbl>        <dbl>       <dbl>
## 1          5.1         3.5          1.4         0.2
## 2          4.9         3            1.4         0.2
## 3          4.7         3.2          1.3         0.2
## 4          4.6         3.1          1.5         0.2
## 5          5           3.6          1.4         0.2
## 6          5.4         3.9          1.7         0.4
代码语言:javascript复制
# filter 删除缺失值
friends_data <- tibble(
  name = c("A", "B", "C", "D"),
  age = c(27, 25, 29, 26),
  height = c(180, NA, NA, 169),
  married = c("yes", "yes", "no", "no")
)

friends_data %>% filter(is.na(height)) %>% head()
代码语言:javascript复制
## # A tibble: 2 x 4
##   name    age height married
##   <chr> <dbl>  <dbl> <chr>
## 1 B        25     NA yes
## 2 C        29     NA no
代码语言:javascript复制
friends_data %>% filter(!is.na(height))%>% head()
代码语言:javascript复制
## # A tibble: 2 x 4
##   name    age height married
##   <chr> <dbl>  <dbl> <chr>
## 1 A        27    180 yes
## 2 D        26    169 no
代码语言:javascript复制
# 随机选取
set.seed(1234)
# 不放回取5个
my_data %>% sample_n(5, replace = FALSE)
代码语言:javascript复制
## # A tibble: 5 x 5
##   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
##          <dbl>       <dbl>        <dbl>       <dbl> <fct>
## 1          5.2         3.5          1.5         0.2 setosa
## 2          5.7         2.6          3.5         1   versicolor
## 3          6.3         3.3          6           2.5 virginica
## 4          6.5         3.2          5.1         2   virginica
## 5          6.3         3.4          5.6         2.4 virginica
代码语言:javascript复制
# 按照比例选取
my_data %>% sample_frac(0.05, replace = FALSE) %>% head()
代码语言:javascript复制
## # A tibble: 6 x 5
##   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
##          <dbl>       <dbl>        <dbl>       <dbl> <fct>
## 1          6.4         2.8          5.6         2.2 virginica
## 2          6.8         3.2          5.9         2.3 virginica
## 3          7.9         3.8          6.4         2   virginica
## 4          6.2         2.9          4.3         1.3 versicolor
## 5          7.1         3            5.9         2.1 virginica
## 6          5.5         2.5          4           1.3 versicolor
代码语言:javascript复制
# 按照特定的列,选取前5个
my_data %>% top_n(5, Sepal.Length)
代码语言:javascript复制
## # A tibble: 5 x 5
##   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
##          <dbl>       <dbl>        <dbl>       <dbl> <fct>
## 1          7.7         3.8          6.7         2.2 virginica
## 2          7.7         2.6          6.9         2.3 virginica
## 3          7.7         2.8          6.7         2   virginica
## 4          7.9         3.8          6.4         2   virginica
## 5          7.7         3            6.1         2.3 virginica
代码语言:javascript复制
# 分组选取前5个
my_data %>%
  group_by(Species) %>%
  top_n(5, Sepal.Length) %>% head()
代码语言:javascript复制
## # A tibble: 6 x 5
## # Groups:   Species [2]
##   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
##          <dbl>       <dbl>        <dbl>       <dbl> <fct>
## 1          5.8         4            1.2         0.2 setosa
## 2          5.7         4.4          1.5         0.4 setosa
## 3          5.7         3.8          1.7         0.3 setosa
## 4          5.5         4.2          1.4         0.2 setosa
## 5          5.5         3.5          1.3         0.2 setosa
## 6          7           3.2          4.7         1.4 versicolor

重复值删除

代码语言:javascript复制
my_data <- as_tibble(iris)

# 删除重复值

my_data[!duplicated(my_data$Sepal.Width), ] %>% head()
代码语言:javascript复制
## # A tibble: 6 x 5
##   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
##          <dbl>       <dbl>        <dbl>       <dbl> <fct>
## 1          5.1         3.5          1.4         0.2 setosa
## 2          4.9         3            1.4         0.2 setosa
## 3          4.7         3.2          1.3         0.2 setosa
## 4          4.6         3.1          1.5         0.2 setosa
## 5          5           3.6          1.4         0.2 setosa
## 6          5.4         3.9          1.7         0.4 setosa
代码语言:javascript复制
# unique函数也可以
unique(my_data) %>% head()
代码语言:javascript复制
## # A tibble: 6 x 5
##   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
##          <dbl>       <dbl>        <dbl>       <dbl> <fct>
## 1          5.1         3.5          1.4         0.2 setosa
## 2          4.9         3            1.4         0.2 setosa
## 3          4.7         3.2          1.3         0.2 setosa
## 4          4.6         3.1          1.5         0.2 setosa
## 5          5           3.6          1.4         0.2 setosa
## 6          5.4         3.9          1.7         0.4 setosa
代码语言:javascript复制
# distinct
my_data %>% distinct() %>% head()
代码语言:javascript复制
## # A tibble: 6 x 5
##   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
##          <dbl>       <dbl>        <dbl>       <dbl> <fct>
## 1          5.1         3.5          1.4         0.2 setosa
## 2          4.9         3            1.4         0.2 setosa
## 3          4.7         3.2          1.3         0.2 setosa
## 4          4.6         3.1          1.5         0.2 setosa
## 5          5           3.6          1.4         0.2 setosa
## 6          5.4         3.9          1.7         0.4 setosa
代码语言:javascript复制
# 对单一变量去重
my_data %>% distinct(Sepal.Length, .keep_all = TRUE) %>% head()
代码语言:javascript复制
## # A tibble: 6 x 5
##   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
##          <dbl>       <dbl>        <dbl>       <dbl> <fct>
## 1          5.1         3.5          1.4         0.2 setosa
## 2          4.9         3            1.4         0.2 setosa
## 3          4.7         3.2          1.3         0.2 setosa
## 4          4.6         3.1          1.5         0.2 setosa
## 5          5           3.6          1.4         0.2 setosa
## 6          5.4         3.9          1.7         0.4 setosa
代码语言:javascript复制
# 对多个变量去重
my_data %>% distinct(Sepal.Length, Petal.Width, .keep_all = TRUE) %>% head()
代码语言:javascript复制
## # A tibble: 6 x 5
##   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
##          <dbl>       <dbl>        <dbl>       <dbl> <fct>
## 1          5.1         3.5          1.4         0.2 setosa
## 2          4.9         3            1.4         0.2 setosa
## 3          4.7         3.2          1.3         0.2 setosa
## 4          4.6         3.1          1.5         0.2 setosa
## 5          5           3.6          1.4         0.2 setosa
## 6          5.4         3.9          1.7         0.4 setosa

对行排序

代码语言:javascript复制
my_data <- as_tibble(iris)

# arrange升序排列
my_data %>% arrange(Sepal.Length) %>% head()
代码语言:javascript复制
## # A tibble: 6 x 5
##   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
##          <dbl>       <dbl>        <dbl>       <dbl> <fct>
## 1          4.3         3            1.1         0.1 setosa
## 2          4.4         2.9          1.4         0.2 setosa
## 3          4.4         3            1.3         0.2 setosa
## 4          4.4         3.2          1.3         0.2 setosa
## 5          4.5         2.3          1.3         0.3 setosa
## 6          4.6         3.1          1.5         0.2 setosa
代码语言:javascript复制
# 降序
my_data %>% arrange(desc(Sepal.Length)) %>% head()
代码语言:javascript复制
## # A tibble: 6 x 5
##   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
##          <dbl>       <dbl>        <dbl>       <dbl> <fct>
## 1          7.9         3.8          6.4         2   virginica
## 2          7.7         3.8          6.7         2.2 virginica
## 3          7.7         2.6          6.9         2.3 virginica
## 4          7.7         2.8          6.7         2   virginica
## 5          7.7         3            6.1         2.3 virginica
## 6          7.6         3            6.6         2.1 virginica
代码语言:javascript复制
# 支持符号
arrange(my_data, -Sepal.Length) %>% head()
代码语言:javascript复制
## # A tibble: 6 x 5
##   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
##          <dbl>       <dbl>        <dbl>       <dbl> <fct>
## 1          7.9         3.8          6.4         2   virginica
## 2          7.7         3.8          6.7         2.2 virginica
## 3          7.7         2.6          6.9         2.3 virginica
## 4          7.7         2.8          6.7         2   virginica
## 5          7.7         3            6.1         2.3 virginica
## 6          7.6         3            6.6         2.1 virginica
代码语言:javascript复制
# 多变量排序
my_data %>% arrange(Sepal.Length, Sepal.Width)
代码语言:javascript复制
## # A tibble: 150 x 5
##    Sepal.Length Sepal.Width Petal.Length Petal.Width Species
##           <dbl>       <dbl>        <dbl>       <dbl> <fct>
##  1          4.3         3            1.1         0.1 setosa
##  2          4.4         2.9          1.4         0.2 setosa
##  3          4.4         3            1.3         0.2 setosa
##  4          4.4         3.2          1.3         0.2 setosa
##  5          4.5         2.3          1.3         0.3 setosa
##  6          4.6         3.1          1.5         0.2 setosa
##  7          4.6         3.2          1.4         0.2 setosa
##  8          4.6         3.4          1.4         0.3 setosa
##  9          4.6         3.6          1           0.2 setosa
## 10          4.7         3.2          1.3         0.2 setosa
## # ... with 140 more rows
代码语言:javascript复制
# 注 如果存在缺失值,一般排序在最后

对列重命名

代码语言:javascript复制
# 使用tidyverse
my_data %>%
  rename(
    sepal_length = Sepal.Length,
    sepal_width = Sepal.Width
    )
代码语言:javascript复制
## # A tibble: 150 x 5
##    sepal_length sepal_width Petal.Length Petal.Width Species
##           <dbl>       <dbl>        <dbl>       <dbl> <fct>
##  1          5.1         3.5          1.4         0.2 setosa
##  2          4.9         3            1.4         0.2 setosa
##  3          4.7         3.2          1.3         0.2 setosa
##  4          4.6         3.1          1.5         0.2 setosa
##  5          5           3.6          1.4         0.2 setosa
##  6          5.4         3.9          1.7         0.4 setosa
##  7          4.6         3.4          1.4         0.3 setosa
##  8          5           3.4          1.5         0.2 setosa
##  9          4.4         2.9          1.4         0.2 setosa
## 10          4.9         3.1          1.5         0.1 setosa
## # ... with 140 more rows
代码语言:javascript复制
# 使用R基础功能
names(my_data)[names(my_data) == "Sepal.Length"] <- "sepal_length"

计算新变量

代码语言:javascript复制
# 使用mutate
my_data <- as_tibble(iris)
my_data %>%
  mutate(sepal_by_petal_l = Sepal.Length/Petal.Length) %>% head()
代码语言:javascript复制
## # A tibble: 6 x 6
##   Sepal.Length Sepal.Width Petal.Length Petal.Width Species sepal_by_petal_l
##          <dbl>       <dbl>        <dbl>       <dbl> <fct>              <dbl>
## 1          5.1         3.5          1.4         0.2 setosa              3.64
## 2          4.9         3            1.4         0.2 setosa              3.5
## 3          4.7         3.2          1.3         0.2 setosa              3.62
## 4          4.6         3.1          1.5         0.2 setosa              3.07
## 5          5           3.6          1.4         0.2 setosa              3.57
## 6          5.4         3.9          1.7         0.4 setosa              3.18
代码语言:javascript复制
# 使用transmute 会删除原来的列
my_data %>%
  transmute(
    sepal_by_petal_l = Sepal.Length/Petal.Length,
    sepal_by_petal_w = Sepal.Width/Petal.Width
    ) %>% head()
代码语言:javascript复制
## # A tibble: 6 x 2
##   sepal_by_petal_l sepal_by_petal_w
##              <dbl>            <dbl>
## 1             3.64            17.5
## 2             3.5             15
## 3             3.62            16
## 4             3.07            15.5
## 5             3.57            18
## 6             3.18             9.75
代码语言:javascript复制
# 对所有变量计算
my_data2 <- my_data %>%
  select(-Species)
# 所有变量除以2.54
my_data2 %>%
  mutate_all(funs(./2.54)) %>% head()
代码语言:javascript复制
## Warning: `funs()` is deprecated as of dplyr 0.8.0.
## Please use a list of either functions or lambdas:
##
##   # Simple named list:
##   list(mean = mean, median = median)
##
##   # Auto named with `tibble::lst()`:
##   tibble::lst(mean, median)
##
##   # Using lambdas
##   list(~ mean(., trim = .2), ~ median(., na.rm = TRUE))
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_warnings()` to see where this warning was generated.
代码语言:javascript复制
## # A tibble: 6 x 4
##   Sepal.Length Sepal.Width Petal.Length Petal.Width
##          <dbl>       <dbl>        <dbl>       <dbl>
## 1         2.01        1.38        0.551      0.0787
## 2         1.93        1.18        0.551      0.0787
## 3         1.85        1.26        0.512      0.0787
## 4         1.81        1.22        0.591      0.0787
## 5         1.97        1.42        0.551      0.0787
## 6         2.13        1.54        0.669      0.157
代码语言:javascript复制
# 生成新变量添加后缀
my_data2 %>%
  mutate_all(funs(cm = ./2.54)) %>% head()
代码语言:javascript复制
## # A tibble: 6 x 8
##   Sepal.Length Sepal.Width Petal.Length Petal.Width Sepal.Length_cm
##          <dbl>       <dbl>        <dbl>       <dbl>           <dbl>
## 1          5.1         3.5          1.4         0.2            2.01
## 2          4.9         3            1.4         0.2            1.93
## 3          4.7         3.2          1.3         0.2            1.85
## 4          4.6         3.1          1.5         0.2            1.81
## 5          5           3.6          1.4         0.2            1.97
## 6          5.4         3.9          1.7         0.4            2.13
## # ... with 3 more variables: Sepal.Width_cm <dbl>, Petal.Length_cm <dbl>,
## #   Petal.Width_cm <dbl>
代码语言:javascript复制
# 对特定的变量计算
my_data2 %>%
  mutate_at(
    c("Sepal.Length", "Petal.Width"),
    funs(cm = ./2.54)
    ) %>% head()
代码语言:javascript复制
## # A tibble: 6 x 6
##   Sepal.Length Sepal.Width Petal.Length Petal.Width Sepal.Length_cm
##          <dbl>       <dbl>        <dbl>       <dbl>           <dbl>
## 1          5.1         3.5          1.4         0.2            2.01
## 2          4.9         3            1.4         0.2            1.93
## 3          4.7         3.2          1.3         0.2            1.85
## 4          4.6         3.1          1.5         0.2            1.81
## 5          5           3.6          1.4         0.2            1.97
## 6          5.4         3.9          1.7         0.4            2.13
## # ... with 1 more variable: Petal.Width_cm <dbl>
代码语言:javascript复制
# 转换变量类型
my_data %>% mutate_if(is.factor, as.character) %>% head()
代码语言:javascript复制
## # A tibble: 6 x 5
##   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
##          <dbl>       <dbl>        <dbl>       <dbl> <chr>
## 1          5.1         3.5          1.4         0.2 setosa
## 2          4.9         3            1.4         0.2 setosa
## 3          4.7         3.2          1.3         0.2 setosa
## 4          4.6         3.1          1.5         0.2 setosa
## 5          5           3.6          1.4         0.2 setosa
## 6          5.4         3.9          1.7         0.4 setosa
代码语言:javascript复制
# 小数点处理
my_data %>% mutate_if(is.numeric, round, digits = 0) %>% head()
代码语言:javascript复制
## # A tibble: 6 x 5
##   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
##          <dbl>       <dbl>        <dbl>       <dbl> <fct>
## 1            5           4            1           0 setosa
## 2            5           3            1           0 setosa
## 3            5           3            1           0 setosa
## 4            5           3            2           0 setosa
## 5            5           4            1           0 setosa
## 6            5           4            2           0 setosa

汇总表

代码语言:javascript复制
my_data <- as_tibble(iris)

my_data %>%
  summarise(
          count = n(),
          mean_sep = mean(Sepal.Length, na.rm = TRUE),
          mean_pet = mean(Petal.Length, na.rm = TRUE)
          )
代码语言:javascript复制
## # A tibble: 1 x 3
##   count mean_sep mean_pet
##   <int>    <dbl>    <dbl>
## 1   150     5.84     3.76
代码语言:javascript复制
# 分组统计
my_data %>%
  group_by(Species) %>%
  summarise(
          count = n(),
          mean_sep = mean(Sepal.Length),
          mean_pet = mean(Petal.Length)
            )
代码语言:javascript复制
## `summarise()` ungrouping output (override with `.groups` argument)
代码语言:javascript复制
## # A tibble: 3 x 4
##   Species    count mean_sep mean_pet
##   <fct>      <int>    <dbl>    <dbl>
## 1 setosa        50     5.01     1.46
## 2 versicolor    50     5.94     4.26
## 3 virginica     50     6.59     5.55
代码语言:javascript复制
# 多变量分组
ToothGrowth %>%
group_by(supp, dose) %>%
  summarise(
    n = n(),
    mean = mean(len),
    sd = sd(len)
  )
代码语言:javascript复制
## `summarise()` regrouping output by 'supp' (override with `.groups` argument)
代码语言:javascript复制
## # A tibble: 6 x 5
## # Groups:   supp [2]
##   supp   dose     n  mean    sd
##   <fct> <dbl> <int> <dbl> <dbl>
## 1 OJ      0.5    10 13.2   4.46
## 2 OJ      1      10 22.7   3.91
## 3 OJ      2      10 26.1   2.66
## 4 VC      0.5    10  7.98  2.75
## 5 VC      1      10 16.8   2.52
## 6 VC      2      10 26.1   4.80
代码语言:javascript复制
# 总结多个变量
my_data %>%
  group_by(Species) %>%
  summarise_all(mean)
代码语言:javascript复制
## # A tibble: 3 x 5
##   Species    Sepal.Length Sepal.Width Petal.Length Petal.Width
##   <fct>             <dbl>       <dbl>        <dbl>       <dbl>
## 1 setosa             5.01        3.43         1.46       0.246
## 2 versicolor         5.94        2.77         4.26       1.33
## 3 virginica          6.59        2.97         5.55       2.03
代码语言:javascript复制
# 选定变量总结
my_data %>%
  group_by(Species) %>%
  summarise_at(c("Sepal.Length", "Sepal.Width"), mean, na.rm = TRUE)
代码语言:javascript复制
## # A tibble: 3 x 3
##   Species    Sepal.Length Sepal.Width
##   <fct>             <dbl>       <dbl>
## 1 setosa             5.01        3.43
## 2 versicolor         5.94        2.77
## 3 virginica          6.59        2.97
代码语言:javascript复制
# 判定为数字,然后总结
my_data %>%
  group_by(Species) %>%
  summarise_if(is.numeric, mean, na.rm = TRUE)
代码语言:javascript复制
## # A tibble: 3 x 5
##   Species    Sepal.Length Sepal.Width Petal.Length Petal.Width
##   <fct>             <dbl>       <dbl>        <dbl>       <dbl>
## 1 setosa             5.01        3.43         1.46       0.246
## 2 versicolor         5.94        2.77         4.26       1.33
## 3 virginica          6.59        2.97         5.55       2.03

结束语

tidyverse函数高效,代码简洁,受过专业训练的一般都用这个,除非记不住,能记一点是一点吧。 love&peace

0 人点赞