有限元平面四边形等差单元python编程

2020-09-24 15:15:38 浏览数 (1)

  • Part I : 平面四边形等差单元理论部分:

平面四边形等差单元 是由矩形单元 作等参变换(坐标映射)而来。

四边形等参单元的刚度矩阵是二重积分式,我想用Maple求解析解,算了很久也没有算出结果。所有我的编程思路是先用 sympy 求出 单元刚度矩阵的符号解,再用lambdify函数将符号解的单元刚度矩阵的各元素转为普通的python函数,最后用scipy进行二重数值积分。

  • Part II : 四边形等参单元的刚度矩阵的python代码:
代码语言:javascript复制
import numpy as np
from scipy.integrate import dblquad
from sympy import symbols, Matrix, diff,simplify
from sympy.utilities.lambdify import lambdify
class Quad8():# 四边形平面应力单元,4个节点,8个自由度
    def __init__(self,nodes,t=1,E=20000, nu=0.25):
        self.nodes = nodes
        self.x1 = self.nodes[0,0]
        self.x2 = self.nodes[1,0]
        self.x3 = self.nodes[2,0]
        self.x4 = self.nodes[3,0]
        self.y1 = self.nodes[0,1]
        self.y2 = self.nodes[1,1]
        self.y3 = self.nodes[2,1]
        self.y4 = self.nodes[3,1]
        
        self.t = t
        self.E = E
        self.nu = nu
        #定义积分变量
        self.xi = symbols("xi")
        self.eta = symbols("eta")
        self.calculate_shapeFunc()
        self.calculate_abcd()
        self.calculate_J()
        self.calculate_B()
        self.calculate_D()
        self.calculate_Ke()
    def calculate_shapeFunc(self):#四边形单元形函数
        self.N1 = 0.25* (1 - self.xi)*(1 - self.eta)
        self.N2 = 0.25* (1   self.xi)*(1 - self.eta)
        self.N3 = 0.25* (1   self.xi)*(1   self.eta)
        self.N4 = 0.25* (1 - self.xi)*(1   self.eta)
    def calculate_abcd(self):#系数
        self.a = 0.25* (self.y1*(self.xi-1)-self.y2*(1 self.xi) self.y3*(1 self.xi)-self.y4*(self.xi-1))
        self.b = 0.25* (self.y1*(self.eta-1) self.y2*(1-self.eta) self.y3*(1 self.eta)-self.y4*(1 self.eta))
        self.c = 0.25* (self.x1*(self.eta-1)-self.x2*(self.eta-1) self.x3*(1 self.eta)-self.x4*(1 self.eta))
        self.d = 0.25* (self.x1*(self.xi-1)-self.x2*(1 self.xi) self.x3*(1 self.xi)-self.x4*(self.xi-1))
    def calculate_J(self): #单元雅各比矩阵行列式
        X = Matrix(self.nodes[:,0].reshape((1,-1))) # 1x4
        Y = Matrix(self.nodes[:,1]) # 4x1
        # M 4x4
        M = Matrix([[0,     1-self.eta,     self.eta-self.xi,       self.xi-1],
                    [self.eta-1,        0,      1 self.xi,      -self.xi-self.eta],
                    [self.xi-self.eta,      -self.xi-1,     0,      1 self.eta],
                    [1-self.xi,     self.xi self.eta,       -1-self.eta,        0]])
        self.J = 0.125* X* M * Y # 1行1列
        self.J = self.J[0,0]
        #print(self.J)
        #print(1.0/ self.J)
        
    def calculate_B(self): #单元应变矩阵,需要用到符号变量微分
        self.B = Matrix(np.zeros((3,8)))
        self.B[0,0] = self.a*(diff(self.N1, self.xi))-self.b*(diff(self.N1, self.eta))
        self.B[1,1] = self.c*(diff(self.N1, self.eta))-self.d*(diff(self.N1, self.xi))
        self.B[2,0] = self.c*(diff(self.N1, self.eta))-self.d*(diff(self.N1, self.xi))
        self.B[2,1] = self.a*(diff(self.N1, self.xi))-self.b*(diff(self.N1, self.eta))
        
        self.B[0,2] = self.a*(diff(self.N2, self.xi))-self.b*(diff(self.N2, self.eta))
        self.B[1,3] = self.c*(diff(self.N2, self.eta))-self.d*(diff(self.N2, self.xi))
        self.B[2,2] = self.c*(diff(self.N2, self.eta))-self.d*(diff(self.N2, self.xi))
        self.B[2,3] = self.a*(diff(self.N2, self.xi))-self.b*(diff(self.N2, self.eta))
        
        self.B[0,4] = self.a*(diff(self.N3, self.xi))-self.b*(diff(self.N3, self.eta))
        self.B[1,5] = self.c*(diff(self.N3, self.eta))-self.d*(diff(self.N3, self.xi))
        self.B[2,4] = self.c*(diff(self.N3, self.eta))-self.d*(diff(self.N3, self.xi))
        self.B[2,5] = self.a*(diff(self.N3, self.xi))-self.b*(diff(self.N3, self.eta))
        self.B[0,6] = self.a*(diff(self.N4, self.xi))-self.b*(diff(self.N4, self.eta))
        self.B[1,7] = self.c*(diff(self.N4, self.eta))-self.d*(diff(self.N4, self.xi))
        self.B[2,6] = self.c*(diff(self.N4, self.eta))-self.d*(diff(self.N4, self.xi))
        self.B[2,7] = self.a*(diff(self.N4, self.xi))-self.b*(diff(self.N4, self.eta))
        self.B *= 1.0/self.J
        #print(self. B)
    
    def calculate_D(self):
         #平面应力单元弹性矩阵
        self.D = np.mat([[1,        self.nu,    0],
                         [self.nu,  1,          0],
                         [0,        0,  0.5*(1-self.nu)]])
        self.D *= self.E/(1-self.nu*self.nu)
        # 对于平面应变为题,只需将E换成 E/(1-nu**2),nu 换成 nu/(1-nu)
    def calculate_Ke(self): #单元刚度矩阵Ke, Ke 为对称方阵
        Z = self.J* self.B.T * self.D * self.B
        self.Ke = np.zeros((8,8)) # Z.shape 8x8 (单元自由度x单元自由度)
        for i in range(8):
            #利用刚度矩阵的对称性,先只计算下三角
            for j in range(i 1):
                # xi 和 eta 从-1到1 二重积分,再乘以厚度
                
                #func =lambdify((self.xi,self.eta),simplify(Z[i,j]),modules='numpy')
                func =lambdify((self.xi,self.eta),Z[i,j],modules='numpy')
                ok = self.t * dblquad(func,-1,1,-1,1,epsabs=1.49e-08, epsrel=1.49e-08)[0]
                self.Ke[i,j] = ok
                self.Ke[j,i] = ok #上三角 镜像得到
        #后处理计算
    def calculate_Strain(self,disp_elem,loc =4): #loc 取值0,1,2,3和4,分别代表4个节点和单元中心(loc=4)
        #计算应变,单元应变不是常数,是双线性差值,跟位置有关
        self.Strain = np.zeros((3,1))
        SS = self.B * disp_elem #是xi和eta的函数
        dic = {0:(-1,-1),1:(1,-1),2:(1,1),3:(-1,1),4:(0,0)}
        
        for i in range(3):
                self.Strain[i,0] = SS[i,0].subs({self.xi:dic[loc][0], self.eta:dic[loc][1]}) #单元中心的应变
                
    def calculate_Stress(self):
        self.Stress = self.D * self.Strain
    def calculate_Strain_4N(self,disp_elem): #4个节点全部计算出来
        #计算应变,单元应变不是常数,是双线性差值,跟位置有关
        self.Strain_4N = np.zeros((4,3,1))
        SS = self.B * disp_elem #是xi和eta的函数
        dic = {0:(-1,-1),1:(1,-1),2:(1,1),3:(-1,1),4:(0,0)}
        for n in range(4):
            for i in range(3):
                    self.Strain_4N[n,i,0] = SS[i,0].subs({self.xi:dic[n][0], self.eta:dic[n][1]}) #单元中心的应变
    
    def calculate_Stress_4N(self):#4个节点全部计算出来
        self.Stress_4N = np.zeros((4,3,1))
        for n in range(4):
            self.Stress_4N[n] = self.D * self.Strain_4N[n]
  • Part III : 刚度矩阵的组装,以及载荷和约束的处理 的理论基础
  • Part IV : 刚度矩阵的组装、位移,应变,应力求解的python代码
代码语言:javascript复制
from numpy import array, mat,zeros, double, integer,float64,sqrt
from numpy.linalg import solve #,det
from random import random
from Quad8 import Quad8
from readFromFemap_quad import readNeuFile
import time
time1 = time.time()
#单位体系 N,mm, ton

#目前没有想好网格生成的算法,节点坐标和单元的拓扑信息暂由有限元前处理软件导出后由python读入
#Nodes info.: x,y,z. #Node Id must start from 1,the step is 1.
#读入节点坐标和单元信息 
#节点无编号,由0自增。
NODE, ELEM = readNeuFile("T1.neu")
NODE = array(NODE,dtype=double)
ELEM = array(ELEM,dtype=integer)
'''
NODE= array([[0,0,0],
           [250,0,0],
           [250,250,0],
           [0,250,0],
           [500,0,0],
           [500,250,0]],
          dtype=double)
'''
#Node ID 从0开始,步长1为1自增
node_qty = NODE.shape[0] #节点数量
#MAT ID,TYPE ID,4 Nodes' ID
'''
ELEM = array([[1,1,0,1,2,3],
           [1,1,1,4,5,2]],
         dtype=integer)
#单元ID 从0开始,步长1为1自增
'''
elem_qty = ELEM.shape[0] #单元数量
#Boundary conditions

#节点自由度 dof CONSTRAINtrain
#node id, dof id(0 for x, 1 for y...),displacement of the dof id
CONSTRAIN=array([[0,0,0.0],
                [0,1,0.0],
                [22,0,0.0],
                [22,1,0.0],
                [23,0,0.0],
                [23,1,0.0],
                [24,0,0.0],
                [24,1,0.0],
                [25,0,0.0],
                [25,1,0.0] ])
#外力 Force矩阵
F = mat(zeros((node_qty*2,1)), dtype=double)
F[2*47]= -5000 # Fx on node 47
F[2*59]= -5000 # Fx on node 59
#F[2*5 1]= 9750 # Fy on node 5
#材料属性
E=70326.6 # 弹性模量 #铝2080
nuxy = 0.33 #泊松比
t = 2.0 #薄板厚度
time2 = time.time()
print(f"有限元模型输入完成!耗时{time2-time1}")

有限元边界条件如下(代码中的节点ID 从0开始,是图中的数字减去1后的结果):

左边的5个单元x和y向位移均为0。锤子角两个节点y向载荷 -5000N。

代码语言:javascript复制
def assembleK(NODE,ELEM,CONSTRAIN):
    elems = [] #用于存储单元对象
    K= mat(zeros((node_qty*2,node_qty*2)), dtype=float64)#初始化总刚度矩阵
    #遍历单元
    for ie in range(elem_qty):
        i,j,m,n = ELEM[ie,2:2 4] #单元的4个节点的ID:
        xi=NODE[i,0]
        yi=NODE[i,1]
        xj=NODE[j,0]
        yj=NODE[j,1]
        xm=NODE[m,0]
        ym=NODE[m,1]          
        xn=NODE[n,0]
        yn=NODE[n,1]
        
        #X[:,ie ] = mat([[xi], [xj], [xm],[xn]])#X坐标#用于后处理
        #Y[:,ie ] = mat([[yi], [yj], [ym],[yn]])#Y坐标#用于后处理
        
        nodes = array([[xi,yi],[xj,yj],[xm,ym],[xn,yn]])
        elem = Quad8(nodes,t=t,E=E,nu=nuxy)#生成单元
        elems.append(elem)
        Ke = elem.Ke
        
        #单元刚度矩阵Ke=[Kii,Kij,Kim,Kin;
        #               Kji,Kjj,Kjm,Kjn;
        #               Kmi,Kmj,Kmm,Kmn;
        #               Kni,Knj,Knm,Knn]
        #总刚度矩阵组装(更新4x4个区域)
        K[2*i : 2*i 2 ,2*i :2*i 2]  = Ke[0:2,0:2]
        K[2*i : 2*i 2, 2*j :2*j 2]  = Ke[0:2,2:4]
        K[2*i : 2*i 2, 2*m: 2*m 2]  = Ke[0:2,4:6]
        K[2*i : 2*i 2, 2*n: 2*n 2]  = Ke[0:2,6:8]
        K[2*j :2*j 2, 2*i: 2*i 2]  = Ke[2:4,0:2]
        K[2*j :2*j 2, 2*j: 2*j 2]  = Ke[2:4,2:4]
        K[2*j: 2*j 2, 2*m: 2*m 2]  = Ke[2:4,4:6]
        K[2*j: 2*j 2, 2*n: 2*n 2]  = Ke[2:4,6:8] 
        K[2*m: 2*m 2, 2*i: 2*i 2]  = Ke[4:6,0:2]
        K[2*m: 2*m 2, 2*j: 2*j 2]  = Ke[4:6,2:4]
        K[2*m: 2*m 2, 2*m: 2*m 2]  = Ke[4:6,4:6]
        K[2*m: 2*m 2, 2*n: 2*n 2]  = Ke[4:6,6:8]
        K[2*n: 2*n 2, 2*i: 2*i 2]  = Ke[6:8,0:2]
        K[2*n: 2*n 2, 2*j: 2*j 2]  = Ke[6:8,2:4]
        K[2*n: 2*n 2, 2*m: 2*m 2]  = Ke[6:8,4:6]
        K[2*n: 2*n 2, 2*n: 2*n 2]  = Ke[6:8,6:8]
        
    #将边界条件(力,位移约束)更新到刚度矩阵;更新外力矩阵
    BigNum = 1.0e150#大数法
    cr = CONSTRAIN.shape[0]
    #遍历约束节点
    for ic in range(CONSTRAIN.shape[0]):
        jj = 2* CONSTRAIN[ic,0]   CONSTRAIN[ic,1] # 约束在总刚度矩阵的行号
        jj = int(jj)#CONSTRAIN 是浮点型数组,所有jj的结果是浮点型。做索引需是整数
        K[jj, jj] *= BigNum #总刚度矩阵对角线上的元素乘以大数
        F[jj] = K[jj, jj]*CONSTRAIN[ic, 2] #载荷也用更新后的K[jj,jj]乘以指定位移
    return K, elems
        
# SOLVE
# 求解 位移矩阵Deformation Matrix DISP
K,elems = assembleK(NODE,ELEM,CONSTRAIN)
time3 = time.time()
print(f"总刚度矩阵组装完成!耗时{time3-time2}")

DISP= solve(K, F)#位移矩阵
#将位移在边界条件节点上的值用输入的约束值修正
for ic in range(CONSTRAIN.shape[0]):
    jj = 2* CONSTRAIN[ic,0]   CONSTRAIN[ic,1]
    jj=int(jj)
    DISP[jj] = CONSTRAIN[ic,2]
time4 = time.time()
print(f"位移矩阵求解完成!耗时{time4-time3}")
#print("位移矩阵:")
#print(DISP)

#之前位移矩阵内数的排列次序是节点1 x向位移,节点1 y向位移; 节点2....
#提高可读性:现在每个节点Ux,Uy 显示在同一行
Delta = DISP.reshape((-1,2))
X= NODE[:,0]
Y= NODE[:,1]
Delta_X = array(Delta[:,0])
Delta_Y = array(Delta[:,1])
#节点总位移
DISP_total = sqrt(Delta_X**2   Delta_Y**2)
#遍历单元,求各个单元上各个节点上的应力和应变
for ie in range(elem_qty):
    i,j,m,n = ELEM[ie,2:2 4] #单元的4个节点的ID:
    DISPe = mat([[DISP[2*i,0]],
                [DISP[2*i 1,0]],
                [DISP[2*j,0]],
                [DISP[2*j 1,0]],
                [DISP[2*m,0]],
                [DISP[2*m 1,0]],
                [DISP[2*n,0]],
                [DISP[2*n 1,0]]])
    #print(DISPe)
    elem = elems[ie] #当前计算的单元
    #loc = 4 #loc 取值0,1,2,3和4,分别代表单元的4个节点和单元中心(loc=4)
    elem.calculate_Strain_4N(DISPe)
    elem.calculate_Stress_4N()
    #print(f"单元{ie}在loc={loc}处的应力矩阵:")
    #print(elem.Stress)

#找出每个节点对应的多(或1)个单元及在这些单元上的位置
def find_elem_locaton(node_qty,ELEM):
    elem_loc_List=[] # [[(elemID,locID),...],...]
    for i in range(node_qty):#遍历节点
        elem_loc_list = []
        for j in range(elem_qty):
            for k in range(4):
                if ELEM[j, k 2] == i:
                    elem_loc_list.append((j, k))
                    #print(f"在 element{j},location {k} 找到 node{i}")
                    break
        elem_loc_List.append(elem_loc_list)
    return elem_loc_List
elem_loc_List = find_elem_locaton(node_qty,ELEM)

# 节点的单元平均应变(在节点所在的各单元平均
NodeMeanStain = zeros((node_qty, 3 1, 1),dtype = float64)#加上Z向正应变
# 节点的单元平均应力(在节点所在的各单元平均
NodeMeanStress = zeros((node_qty, 3, 1),dtype = float64)
for i in range(node_qty):
    n = len(elem_loc_List[i])
    StrainSum = zeros((3, 1),dtype = float64)
    StressSum = zeros((3, 1),dtype = float64)
    for j in range(n):
        elemID,loc = elem_loc_List[i][j]
        elem = elems[elemID]
        StrainSum  = elem.Strain_4N[loc]
        StressSum  = elem.Stress_4N[loc]
        
    NodeMeanStain[i,0:3] = StrainSum /n
    NodeMeanStress[i] = StressSum /n
    NodeMeanStain[i,3] = -nuxy/E*(NodeMeanStress[i,0] NodeMeanStress[i,1])
    
meanMajorPrnStress = 0.5*(NodeMeanStress[:,0]  NodeMeanStress[:,1]) sqrt((0.5*(NodeMeanStress[:,0] -NodeMeanStress[:,1]))**2   NodeMeanStress[:,2]**2) #主应力1
meanMinorPrnStress = 0.5*(NodeMeanStress[:,0]  NodeMeanStress[:,1])-sqrt((0.5*(NodeMeanStress[:,0] -NodeMeanStress[:,1]))**2   NodeMeanStress[:,2]**2) #主应力2(次)
meanVonmiStress = sqrt(0.5*((meanMajorPrnStress-meanMinorPrnStress)**2   meanMajorPrnStress**2   meanMinorPrnStress**2)) # 冯米塞斯应力 Von mises stress

#for i in range(node_qty):
    #print(f"节点{i}的单元平均应变矩阵:")
    #print(NodeMeanStain[i])
#for i in range(node_qty):
    #print(f"节点{i}的单元平均应力矩阵:")
    #print(NodeMeanStress[i])

#结果可视化
#from numpy import array,zeros,integer
import sys
from PyQt5.QtCore import *
from PyQt5.QtGui import *
from PyQt5.QtWidgets import *
from PyQt5.QtOpenGL import QGLWidget
from OpenGL import GL
# 后处理
'''K*X = F 求解出来的 位移矩阵是 按节点排列的。size 2*node_qty x 1。
应变和应力的求解是在单元中进行的
应变和应力 在各节处的取值(平均值 or最大值)又需要在 共享该节点的各单元上 取平均 或者取最大值
结果云图绘制又是按单元进行的
所以数据需要按 节点->单元 -> 节点 - > 单元  进行转化。
'''
def nodeData2ElemData(nodeData, ELEM, nodes_per_elem =4):
    '''后处理云图是按照单元依次绘制,所有须要把按节点排列的数据转化为按单元排列'''
    node_qty = nodeData.shape[0] # 按节点排序的 X向应力 等等这样的数组,size  node_qty x 1
    elem_qty = ELEM.shape[0] # ELEM 中 2到5 列包含单元中4个节点的ID
    elemData = zeros((elem_qty,nodes_per_elem),dtype =nodeData.dtype)
    for i in range(elem_qty):
        for j in range(nodes_per_elem):
            nodeID = ELEM[i,2 j] #须为整数 # ELEM 中 2到5 列包含单元中4个节点的ID
            elemData[i,j] = nodeData[nodeID]
    return elemData

def scaleXY(X,Y,k =2):# 输出用于OPENGL 绘图的坐标
    # 传入按单元排列的坐标数据。 X and Y size :elem_qty x nodes_per_elem
    max_X, min_X =  X.max(), X.min()
    max_Y, min_Y =  Y.max(), Y.min()
    max_span = max(max_X-min_X,max_Y-min_Y)
    X_scaled = (X- min_X)/ max_span*k -1
    Y_scaled = (Y- min_Y)/ max_span*k -k/4.0
    return X_scaled, Y_scaled

X= nodeData2ElemData(X,ELEM)
Y= nodeData2ElemData(Y,ELEM)
Delta_X = nodeData2ElemData(Delta_X,ELEM)
Delta_Y = nodeData2ElemData(Delta_Y,ELEM)
scale =5
X_new = X    scale* Delta_X
Y_new = Y    scale* Delta_Y
X, Y                        = scaleXY(X,Y) # 用于绘图的变形前的缩放后的坐标
X_new_scaled, Y_new_scaled  =  scaleXY(X_new,Y_new) # 用于绘图的变形后的缩放后的坐标


#计算按单元排列的各个后处理变量
DISP_total = nodeData2ElemData(DISP_total,ELEM) #总位移
meanXStrain = nodeData2ElemData(NodeMeanStain[:,0],ELEM)# X向正应变
meanYStrain = nodeData2ElemData(NodeMeanStain[:,1],ELEM)# Y向正应变
meanXYSrain = nodeData2ElemData(NodeMeanStain[:,2],ELEM)# XY剪应变
meanZStrain = nodeData2ElemData(NodeMeanStain[:,3],ELEM)# Z向正应变
meanXStress = nodeData2ElemData(NodeMeanStress[:,0],ELEM)# X向正应力
meanYStress = nodeData2ElemData(NodeMeanStress[:,1],ELEM)# Y向正应力
meanXYStress = nodeData2ElemData(NodeMeanStress[:,2],ELEM)# XY剪应力
meanMajorPrnStress = nodeData2ElemData(meanMajorPrnStress,ELEM)# X向正应力 #主应力1
meanMinorPrnStress = nodeData2ElemData(meanMinorPrnStress,ELEM)# X向正应力 #主应力1
meanVonmiStress = nodeData2ElemData(meanVonmiStress,ELEM) # 冯米塞斯应力
  • Part V : 有限元后处理数据的云图绘制

(OPENGL绘图,这部分不是本篇的重点)

代码语言:javascript复制
#云图显示
class GLWidget(QGLWidget):
    def __init__(self, parent =None):
        super(GLWidget, self).__init__(parent)
    def initializeGL(self):
        self.qglClearColor(QColor("black")) #背景色
        GL.glShadeModel(GL.GL_SMOOTH) #!颜色平滑渲染
        self.object = self.makeObject( Delta_X, X_new_scaled,Y_new_scaled)#2020.9.19
        
    def paintGL(self):
        GL.glClear(GL.GL_COLOR_BUFFER_BIT | GL.GL_DEPTH_BUFFER_BIT)
        GL.glLoadIdentity()# Reset The Projection Matrix
        GL.glCallList(self.object)
    def resizeGL(self, width, height):
        side = min(width, height)
        GL.glViewport((width - side) // 2, (height - side) // 2, side, side)#保持图形的长宽比
        #GL.glViewport(50,50,500,500)
        GL.glMatrixMode(GL.GL_PROJECTION)
        GL.glLoadIdentity()# Reset The Projection Matrix
        #GL.glOrtho(-0.5,  0.5,  0.5, -0.5, 4.0, 15.0)
        GL.glMatrixMode(GL.GL_MODELVIEW)
    def makeObject(self,elemData,X,Y):
        genList = GL.glGenLists(1)
        GL.glNewList(genList, GL.GL_COMPILE)
        LSL= elemData.min()
        USL= elemData.max()
        print(f"当前数据集最大值:{USL}, 最小值: {LSL}")
        for i in range(elem_qty):
            #GL.glBegin(GL.GL_POLYGON)# 开始绘制多边形
            GL.glBegin(GL.GL_QUADS)# 开始绘制四边形
            for j in range(4): #四节点单元!!!
                if LSL==USL:
                    r,g,b = (0,1,0)
                else:
                    r,g,b = self.num2RGB(elemData[i,j],LSL,USL)
                GL.glColor3f(r,g,b)
                x,y = X[i,j], Y[i,j]
                GL.glVertex2f(x,y)
            GL.glEnd()
            
            GL.glLineWidth(1.0)
            GL.glBegin(GL.GL_LINE_LOOP)#画线
            GL.glColor3f(1,1,1)
            GL.glVertex2f(X[i,0],Y[i,0])
            GL.glVertex2f(X[i,1],Y[i,1])
            GL.glVertex2f(X[i,2],Y[i,2])
            GL.glVertex2f(X[i,3],Y[i,3])
            GL.glEnd()
            
        GL.glEndList()
        return genList
    def num2RGB(self,x,LSL=0, USL=1.0):
        r=(x-LSL)/(USL-LSL)
        if r>=0.75:
            return (1, 1*(1-r)*4, 0)
        elif r>=0.5:
            return (1*(r-0.5)*4, 1, 0)
        elif r>=0.25:
            return (0, 1, 1*(0.5-r)*4)
        elif r>=0:
            return (0, 1*r*4, 1)
    
    def minimumSizeHint(self):
        return QSize(100, 100)
    
class MainWindow(QMainWindow):
    def __init__(self):        
        super().__init__()
        self.setCentralWidget(GLWidget())
        global scale
        self.setWindowTitle("X")
        self.resize(1000, 700)
app = QApplication(sys.argv)
mainWin = MainWindow()
mainWin.show()
sys.exit(app.exec_()) 
  • Part VI : 云图展示(我的结果和由Nastran计算得到的结果做对比)

总位移:

X向正应力:

Y向正应力:

第一主应力:

第二主应力:

Vonmises 应力:

0 人点赞