代码语言:javascript复制
Flink 1.11.0
hadoop-3.0.3, hive-2.3.4
现象
写入Hive表的性能,每秒写入记录数,发现性能并不乐观,上有节点背压严重。
写入Hive表.png
Hive Table DDL:
代码语言:javascript复制CREATE TABLE dw_db.dw_xxx_rt(
中间几十个字段省略,
`position` string COMMENT '位置'
) PARTITIONED BY (p_dt STRING, p_hours STRING) row format delimited
fields terminated by 't'
collection items terminated by 'n'
stored as orc TBLPROPERTIES (
'sink.partition-commit.trigger'='process-time',
'sink.partition-commit.delay'='0s',
'sink.partition-commit.policy.kind'='metastore,success-file',
'sink.shuffle-by-partition.enable'='true'
);
而写入HDFS文件的性能,每秒写入记录数,性能符合期待。
写入HDFS文件.png
HDFS文件的DDL:
代码语言:javascript复制drop table hive_catalog.dw_db.dw_xxx_hdfs;
CREATE TABLE hive_catalog.dw_db.dw_xxx_hdfs (
中间几十个字段省略,
`position` string COMMENT '位置',
`p_dt` string,
`p_hours` string
) PARTITIONED BY (p_dt , p_hours ) with (
'connector' = 'filesystem',
'path' = 'hdfs://ztcluster/tmp/test/xk',
'format' = 'orc',
'sink.partition-commit.trigger'='process-time',
'sink.partition-commit.delay'='0s',
'sink.partition-commit.policy.kind'='success-file',
'sink.shuffle-by-partition.enable'='true'
);
翻阅Flink的PR,十几天前,阿里Flink的开发同学已经注意到了这个问题,我们将之吸收到测试环境,编译替换lib下jar包,重新测试,性能确实up了,单并发升至5W每秒,上游节点才稍微有背压。 [FLINK-19121][hive] Avoid accessing HDFS frequently in HiveBulkWriterFactory
所以,Flink的新特性从发布到应用线上,稳定性与性能上都不能过于乐观、听信于官方宣传, 司内另一教训就是过早在热数据存储层启用了Hadoop的纠删码,导致问题不断,被迫退化到副本机制。 这与前期调研、验证不足,对该特性过于轻信有莫大关系,教训也是深刻。