机器学习中的常用编码方式(二)

2020-10-10 10:16:42 浏览数 (1)

1). Count Encoding Count encoding是将分类特征替换为它们的出现次数,比如某个分类中'Peking'出现了10次,那么'Peking'就会被替换为10. 我们可以用categorical-encodings包中的CountEncoder实现。

代码语言:javascript复制
import category_encoders as ce
features = ['Peking', 'Peking', 'Shanghai', 'Peking', 'Guangzhou', 'Shanghai']
count_enc = ce.CountEncoder()
count_enc.fit_transform(features)

返回(第一列是索引): 0 3 1 3 2 2 3 3 4 1 5 2

2). Target Encoding target encoding其实就是将分类特征替换为对应目标值的后验概率。比如以下例子:

第三列编码值的计算过程其实很简单,比如说cat出现次数是5次,5次中target是1的次数有2次,因为编码值为0.4 。

代码语言:javascript复制
import pandas as pd
from category_encoders import TargetEncoder

encoder = TargetEncoder()
df['Encoded Animal '] = encoder.fit_transform(df['Animal'], df['Target'])

参考:https://medium.com/analytics-vidhya/target-encoding-vs-one-hot-encoding-with-simple-examples-276a7e7b3e64

0 人点赞