目标:1分片2副本的集群
所以需要两台机器,分别是:172.31.59.118|172.31.40.79
安装参考dockerfile:
- https://hub.docker.com/r/yandex/clickhouse-client/dockerfile
- https://hub.docker.com/r/yandex/clickhouse-server/dockerfile
安装步骤
Amazon linux 2是centos系的,使用的yum系的安装方式
- GitHub - Altinity/clickhouse-rpm-install: How to install clickhouse RPM packages
修改机器时区(不需要重启)
代码语言:javascript复制sudo cp /usr/share/zoneinfo/Asia/Shanghai /etc/localtime
开始安装
代码语言:javascript复制sudo yum install -y curl
sudo yum install -y epel-release
curl -s https://packagecloud.io/install/repositories/altinity/clickhouse/script.rpm.sh | sudo os=centos dist=7 bash # for Amazon Linux
sudo yum list 'clickhouse*'
sudo yum install -y clickhouse-server clickhouse-client
sudo yum list installed 'clickhouse*'
sudo /etc/init.d/clickhouse-server restart
clickhouse-client
安装zookeeper集群,也可以使用现成的,本次使用现成的,配置如下,后续加入配置文件中
代码语言:javascript复制<zookeeper-servers>
<node index="1">
<host>172.31.3.79</host>
<port>2181</port>
</node>
<node index="2">
<host>172.31.47.229</host>
<port>2181</port>
</node>
<node index="3">
<host>172.31.53.227</host>
<port>2181</port>
</node>
</zookeeper-servers>
设置每台机器clickhouse用户和密码,先生成sha256的密码
代码语言:javascript复制PASSWORD=$(base64 < /dev/urandom | head -c16); echo "$PASSWORD"; echo -n "$PASSWORD" | sha256sum | tr -d '-'
rKbfrrze4PO5xWeN
93626c6535b2817d55eca365d9a00bbe88c63e24fa4941ce8cdaf4c07f4ab4a6
添加用户sudo vim /etc/clickhouse-server/users.xml
<users>
<zaihui>
<password_sha256_hex>93626c6535b2817d55eca365d9a00bbe88c63e24fa4941ce8cdaf4c07f4ab4a6</password_sha256_hex>
<networks incl="networks" replace="replace">
<ip>::/0</ip>
</networks>
<profile>default</profile>
<quota>default</quota>
</zaihui>
</users>
验证
代码语言:javascript复制clickhouse-client -u zaihui --password rKbfrrze4PO5xWeN
clickhouse-client -u zaihui --password rKbfrrze4PO5xWeN
修改clickhouse时区配置
代码语言:javascript复制<timezone>Asia/Shanghai</timezone>
取消访问来源ip的限制sudo vim /etc/clickhouse-server/config.xml
<!-- <listen_host>::</listen_host> -->
<!-- Same for hosts with disabled ipv6: -->
<listen_host>0.0.0.0</listen_host>
<!-- Default values - try listen localhost on ipv4 and ipv6: -->
<!--
<listen_host>::1</listen_host>
<listen_host>127.0.0.1</listen_host>
-->
开始配置集群 配置sudo vim /etc/clickhouse-server/config.xml
<!-- If element has 'incl' attribute, then for it's value will be used corresponding substitution from another file.
By default, path to file with substitutions is /etc/metrika.xml. It could be changed in config in 'include_from' element.
Values for substitutions are specified in /yandex/name_of_substitution elements in that file.
-->
<include_from>/etc/clickhouse-server/metrika.xml</include_from>
<!-- ZooKeeper is used to store metadata about replicas, when using Replicated tables.
Optional. If you don't use replicated tables, you could omit that.
See https://clickhouse.yandex/docs/en/table_engines/replication/
-->
配置/etc/clickhouse-server/metrika.xml
,所有机器都一样
<yandex>
<clickhouse_remote_servers>
<ck_cluster>
<shard>
<weight>1</weight>
<internal_replication>true</internal_replication>
<replica>
<host>172.31.59.118</host>
<port>9000</port>
<user>zaihui</user>
<password>rKbfrrze4PO5xWeN</password>
</replica>
<replica>
<host>172.31.40.79</host>
<port>9000</port>
<user>zaihui</user>
<password>rKbfrrze4PO5xWeN</password>
</replica>
</shard>
</ck_cluster>
</clickhouse_remote_servers>
<zookeeper-servers>
<node index="1">
<host>172.31.3.79</host>
<port>2181</port>
</node>
<node index="2">
<host>172.31.47.229</host>
<port>2181</port>
</node>
<node index="3">
<host>172.31.53.227</host>
<port>2181</port>
</node>
</zookeeper-servers>
<networks>
<ip>::/0</ip>
</networks>
<clickhouse_compression>
<case>
<min_part_size>10000000000</min_part_size>
<min_part_size_ratio>0.01</min_part_size_ratio>
<method>lz4</method>
</case>
</clickhouse_compression>
</yandex>
配置/etc/clickhouse-server/config.d/macros.xml
,所有机器都不一样,虽然也可以把配置放在metrika.xml中,但是把不同的独立出来更合适
<yandex>
<macros>
<replica>172.31.59.118</replica>
<shard>01</shard>
<layer>01</layer>
</macros>
</yandex>
代码语言:javascript复制<yandex>
<macros>
<replica>172.31.40.79</replica>
<shard>01</shard>
<layer>01</layer>
</macros>
</yandex>
集群配置完成之后重启一下,确保每个机器都能连接成功
使用datagrip连接各个机器,全部成功
验证集群功能
创建以replica结尾的本地表delphi_membership_properties_replica和分布式表delphi_membership_properties
代码语言:javascript复制create table dm.delphi_membership_properties_replica
(
membership_id int, -- comment '会员id',
membership_uid String, -- comment '会员uid',
business_group_id int, -- comment '商户id',
business_group_uid String , --comment '商户uid',
business_group_name String, -- comment '商户名',
business_id Nullable(int), -- comment '门店id',
business_uid Nullable(String), -- comment '门店uid',
business_name Nullable(String), -- comment '门店name',
membership_source String, -- comment '会员入会来源',
created_at DateTime,
calendar_date Date,
last_visited_date Date, -- comment '最近一次访问时间',
membership_level int, -- comment '会员等级',
customer_type String, -- comment '会员类型:新会员/忠诚会员/常来会员/淡忘会员/流失会员,根据最后一次访问时间和商户配置计算而来',
visit_count int, -- comment '到访次数',
consumptions_count Nullable(int), -- comment '消费次数',
consumptions_original_amount Nullable(Decimal128(2)), -- comment '消费总金额:原始金额',
consumptions_amount Nullable(Decimal128(2)), -- comment '消费总金额:实付金额',
average_consume Nullable(Decimal128(2)), -- comment '平均消费金额:原始金额/消费次数',
account_id int, -- comment '用户id',
account_uid String, -- comment '用户uid',
account_phone String, -- comment '用户手机',
age Nullable(int), -- comment '年龄',
birthday Nullable(String), -- comment '生日',
birthday_month Nullable(int), -- comment '生日月份',
birthday_day Nullable(int), -- comment '生日天',
birthday_year Nullable(int), -- comment '生日年',
zodiac String, -- comment '星座',
name Nullable(String), -- comment '姓名',
gender int, -- comment '性别',
profession Nullable(String), -- comment '职业',
country Nullable(String), -- comment '国家',
province Nullable(String), -- comment '省份',
city Nullable(String), -- comment '城市',
region Nullable(String), -- comment '商圈',
head_img_url Nullable(String), -- comment '头像',
wechat_name Nullable(String), -- comment '微信名',
wechat_city Nullable(String), -- comment '微信城市',
wechat_country Nullable(String), -- comment '微信国家',
wechat_province Nullable(String), -- comment '微信省份',
wechat_head_img_url Nullable(String), -- comment '微信头像',
wechat_groupid int, -- comment '微信组',
wechat_remark Nullable(String), -- comment '微信备注'
insert_time DateTime DEFAULT now(), -- 数据插入时间
insert_date Date DEFAULT toDate(now()) -- 数据插入日期
)
ENGINE = ReplicatedMergeTree('/clickhouse/tables/{layer}-{shard}/delphi_membership_properties_replica', '{replica}')
order by (business_group_uid, calendar_date, created_at, membership_uid);
create table dm.delphi_membership_properties as dm.delphi_membership_properties_replica
ENGINE = Distributed(ck_cluster, dm, delphi_membership_properties_replica, rand())
插入数据:在本地表和分布式表插入时在每个replica中都有数据生成
代码语言:javascript复制INSERT INTO dm.delphi_membership_properties_replica (membership_id, membership_uid, business_group_id, business_group_uid, business_group_name, business_id, business_uid, business_name, membership_source, created_at, calendar_date, last_visited_date, membership_level, customer_type, visit_count, consumptions_count, consumptions_original_amount, consumptions_amount, average_consume, account_id, account_uid, account_phone, age, birthday, birthday_month, birthday_day, birthday_year, zodiac, name, gender, profession, country, province, city, region, head_img_url, wechat_name, wechat_city, wechat_country, wechat_province, wechat_head_img_url, wechat_groupid, wechat_remark, insert_time, insert_date) VALUES (3209903, '6735462d5ce444dd8d80763dbcaee746', 2524, '00067f26104445ff89f89820b898af37', '沐沐茶旅', null, null, null, 'third_party', '2017-12-24 16:17:34', '2017-12-24', '2017-12-24', 1, 'Forget', 0, 0, 0.00, 0.00, 0.00, 2754132, 'e3c8b0925460435586f05741eaae548f', '18616566494', null, null, null, null, null, 'Unknown', null, 1, null, '中国', '上海', '黄浦', null, null, 'fengyi', '黄浦', '中国', '上海', 'https://thirdwx.qlogo.cn/mmopen/Ria7DkYdO91HKPibgeJm3Inq3lbbFXlwHJAJMFREYOVibwNCriab41qpVvicm6zd3kZqByBQFC9t9pfMuORQoUIroyicBibicSQIIn0Z/132', 0, '', '2019-07-10 07:50:00', '2019-07-10');
INSERT INTO dm.delphi_membership_properties (membership_id, membership_uid, business_group_id, business_group_uid, business_group_name, business_id, business_uid, business_name, membership_source, created_at, calendar_date, last_visited_date, membership_level, customer_type, visit_count, consumptions_count, consumptions_original_amount, consumptions_amount, average_consume, account_id, account_uid, account_phone, age, birthday, birthday_month, birthday_day, birthday_year, zodiac, name, gender, profession, country, province, city, region, head_img_url, wechat_name, wechat_city, wechat_country, wechat_province, wechat_head_img_url, wechat_groupid, wechat_remark, insert_time, insert_date) VALUES (3226176, '50778ff3ca434edcb113f93af43d646a', 2524, '00067f26104445ff89f89820b898af37', '沐沐茶旅', null, null, null, 'third_party', '2017-12-25 15:44:41', '2017-12-25', '2017-12-25', 1, 'Forget', 0, 0, 0.00, 0.00, 0.00, 2780924, 'c01c3877410144a1965b3ede6e18905c', '13564809560', null, null, null, null, null, 'Unknown', null, 1, null, '中国', '', '', null, null, '骨头™', '', '中国', '', 'https://thirdwx.qlogo.cn/mmopen/VNMic85jx3X5tq6iaBbVY7spB1dWWsWiae5Dz1p2LCsq0mCxps6Zt9sxPjdb7RkribVVElytAmichfx8ibayvC4QmW0g/132', 0, '', '2019-07-10 08:50:11', '2019-07-10');
查询数据:停掉一个replica之后仍然能查询出数据
JDBC连接clickhouse cluster
两种方式,一种是使用clickhouse-jdbc连接集群中的每一个节点,另外一种是使用SLB提供一个对外的统一地址
使用BalancedClickhouseDataSource
参考以下clickhouse-jdbc中的代码中的注释:jdbc:clickhouse://localhost:8123,localhost:8123/database?compress=1&decompress=2
- clickhouse-jdbc/BalancedClickhouseDataSource.java at master · yandex/clickhouse-jdbc · GitHub
/**
* create Datasource for clickhouse JDBC connections
*
* @param url address for connection to the database
* must have the next format {@code jdbc:clickhouse://<first-host>:<port>,<second-host>:<port>/<database>?param1=value1¶m2=value2 }
* for example, {@code jdbc:clickhouse://localhost:8123,localhost:8123/database?compress=1&decompress=2 }
* @throws IllegalArgumentException if param have not correct format, or error happens when checking host availability
*/
public BalancedClickhouseDataSource(final String url) {
this(splitUrl(url), getFromUrl(url));
}
/**
* create Datasource for clickhouse JDBC connections
*
* @param url address for connection to the database
* @param properties database properties
* @see #BalancedClickhouseDataSource(String)
*/
public BalancedClickhouseDataSource(final String url, Properties properties) {
this(splitUrl(url), new ClickHouseProperties(properties));
}
/**
* create Datasource for clickhouse JDBC connections
*
* @param url address for connection to the database
* @param properties database properties
* @see #BalancedClickhouseDataSource(String)
*/
public BalancedClickhouseDataSource(final String url, ClickHouseProperties properties) {
this(splitUrl(url), properties.merge(getFromUrlWithoutDefault(url)));
}
使用SLB
使用LB均衡到各个副本,保证应用方查询单host,本次不使用BalancedClickhouseDataSource,从github issue上看BalancedClickhouseDataSource在之前版本出现副本故障时没能故障转移,不知道是否有修复。
配置LB:使用标准JDBC连接时需要映射http协议到clickhouse的8123端口(http监听端口)
验证LB配置是否生效
代码语言:javascript复制echo 'SELECT * from dm.delphi_membership_properties FORMAT Pretty' | curl 'internal-clickhouse-prod-621097858.
cn-north-1.elb.amazonaws.com.cn:80/?' --data-binary @-
贴一下在Springboot中使用标准JDBC数据源HikariDataSource÷连接clickhouse的配置:
代码语言:javascript复制package com.kezaihui.delphi.core.config;
import com.baomidou.mybatisplus.entity.GlobalConfiguration;
import com.baomidou.mybatisplus.enums.DBType;
import com.baomidou.mybatisplus.enums.IdType;
import com.baomidou.mybatisplus.spring.MybatisSqlSessionFactoryBean;
import com.zaxxer.hikari.HikariDataSource;
import lombok.extern.slf4j.Slf4j;
import org.apache.ibatis.session.SqlSessionFactory;
import org.mybatis.spring.annotation.MapperScan;
import org.mybatis.spring.boot.autoconfigure.MybatisProperties;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.boot.context.properties.ConfigurationProperties;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.core.io.support.PathMatchingResourcePatternResolver;
import org.springframework.core.io.support.ResourcePatternResolver;
import javax.sql.DataSource;
/**
* clickhouse 数据源配置
*
* @author Suncle
* @date 2019-07-05
*/
@Slf4j
@Configuration
@MapperScan(basePackages = {
"com.kezaihui.delphi.core.membership.**.mapper"
}, sqlSessionFactoryRef = "ckSqlSessionFactory")
public class CkDataSourceConfig {
@Autowired
private MybatisProperties mybatisProperties;
/**
* 读取数据源
*
* @return javax.sql.DataSource 数据源
*/
@Bean(name = "ckDataSource")
@ConfigurationProperties(prefix = "spring.clickhouse.datasource")
public DataSource dataSource() {
return new HikariDataSource();
}
/**
* sql 会话工厂配置
*
* @param ckDataSource javax.sql.DataSource 数据源
* @return SqlSessionFactory
*/
@Bean(name = "ckSqlSessionFactory")
public SqlSessionFactory sqlSessionFactory(@Qualifier("ckDataSource") DataSource ckDataSource) {
MybatisSqlSessionFactoryBean bean = new MybatisSqlSessionFactoryBean();
bean.setDataSource(ckDataSource);
try {
GlobalConfiguration configuration = new GlobalConfiguration();
configuration.setDbType(DBType.OTHER.name());
configuration.setIdType(IdType.AUTO.getKey());
configuration.setDbColumnUnderline(true);
bean.setGlobalConfig(configuration);
ResourcePatternResolver resolver = new PathMatchingResourcePatternResolver();
bean.setMapperLocations(mybatisProperties.resolveMapperLocations());
bean.setConfigLocation(resolver.getResource(mybatisProperties.getConfigLocation()));
return bean.getObject();
} catch (Exception e) {
throw new RuntimeException(e);
}
}
}
配置好之后可以使用mybatis查询数据
原生TCP协议连接clickhouse cluster
同样是采用SLB映射到不同的节点上,但是映射的时候需要注意不同之处:
- 映射TCP协议到clickhouse的9000端口
连接方式可以参考clickhouse-driver的连接,也可以直接使用python语言clickhouse-driver库
clickhouse python client的选择
官方没有维护各语言的driver,全部由第三方维护,主要有以下两个,对比参见后面。
结论:选择clickhouse-driver,数仓项目使用orm的意义不大。因为应用层不是python项目,是java项目
clickhouse-driver
GitHub - mymarilyn/clickhouse-driver: ClickHouse Python Driver with native interface support 活跃度高,star数最高。语法主要是执行原生sql
infi.clickhouse_orm
GitHub - Infinidat/infi.clickhouse_orm: A Python library for working with the ClickHouse database (https://clickhouse.yandex/) 活跃度高,star数第二高。是一个为clickhouse封装的orm框架,写起来有django的感觉
参考:
- https://github.com/jneo8/clickhouse-setup
- https://clickhouse.yandex/docs/zh/operations/table_engines/replication/
- https://clickhouse.yandex/docs/zh/operations/table_engines/distributed/
- https://clickhouse.yandex/docs/en/operations/table_engines/replication/
- https://clickhouse.yandex/tutorial.html
- https://hzkeung.com/2018/06/30/clickhouse-cluster-test
- https://hzkeung.com/2018/06/21/clickhouse-cluster-install
- https://www.jianshu.com/p/383cae967a64