莫比乌斯函数,由德国数学家和天文学家莫比乌斯提出。梅滕斯(Mertens)首先使用μ(n)(miu(n))作为莫比乌斯函数的记号。具体定义如下:
如果一个数包含平方因子,那么miu(n) = 0。例如:miu(4), miu(12), miu(18) = 0。
如果一个数不包含平方因子,并且有k个不同的质因子,那么miu(n) = (-1)^k。例如:miu(2), miu(3), miu(30) = -1,miu(1), miu(6), miu(10) = 1。
给出一个区间[a,b],S(a,b) = miu(a) miu(a 1) ...... miu(b)。
例如:S(3, 10) = miu(3) miu(4) miu(5) miu(6) miu(7) miu(8) miu(9) miu(10)
= -1 0 -1 1 -1 0 0 1 = -1。
Input
代码语言:javascript复制输入包括两个数a, b,中间用空格分隔(2 <= a <= b <= 10^10)
Output
代码语言:javascript复制输出S(a, b)。
Input示例
代码语言:javascript复制3 10
Output示例
代码语言:javascript复制-1
相关问题
杜教筛裸题
sum_{i=1}^{n}mu(i) = 1 - sum_{d=2}^{n}sum_{i=1}^{lfloorfrac{n}{d}rfloor}mu(i)
代码语言:javascript复制#include<cstdio>
#include<map>
#define LL long long
using namespace std;
const int MAXN=5000030;
int limit=5000000,tot=0,vis[MAXN],prime[MAXN];
LL N,mu[MAXN];
void GetMu()
{
vis[1]=1;mu[1]=1;
for(int i=1;i<=limit;i )
{
if(!vis[i]) prime[ tot]=i,mu[i]=-1;
for(int j=1;j<=tot&&i*prime[j]<=limit;j )
{
vis[i*prime[j]]=true;
if(i%prime[j]==0) {mu[i*prime[j]]=0;break;}
else mu[i*prime[j]]=-mu[i];
}
}
for(int i=1;i<=limit;i ) mu[i] =mu[i-1];
}
map<LL,LL>Amu;
LL SolveMu(LL n)
{
if(n<=limit) return mu[n];
if(Amu.count(n)) return Amu[n];
LL tmp=1,nxt;
for(LL i=2;i<=n;i=nxt 1)
{
nxt=n/(n/i);
tmp-=(nxt-i 1)*SolveMu(n/i);
}
return Amu[n]=tmp;
}
int main()
{
GetMu();
LL a,b;
scanf("%lld%lld",&a,&b);
printf("%lld",SolveMu(b)-SolveMu(a-1));
return 0;
}