在工作中。在做数据集时,需要对图片进行处理,照相的图片我们只需要特定的部分,所以就想到裁剪一种所需的部分。当然若是图片有规律可循则使用opencv对其进行膨胀腐蚀等操作。这样更精准一些。
一、指定图像位置的裁剪处理
代码语言:javascript复制import os
import cv2
# 遍历指定目录,显示目录下的所有文件名
def CropImage4File(filepath,destpath):
pathDir = os.listdir(filepath) # 列出文件路径中的所有路径或文件
for allDir in pathDir:
child = os.path.join(filepath, allDir)
dest = os.path.join(destpath,allDir)
if os.path.isfile(child):
image = cv2.imread(child)
sp = image.shape #获取图像形状:返回【行数值,列数值】列表
sz1 = sp[0] #图像的高度(行 范围)
sz2 = sp[1] #图像的宽度(列 范围)
#sz3 = sp[2] #像素值由【RGB】三原色组成
#你想对文件的操作
a=int(sz1/2-64) # x start
b=int(sz1/2 64) # x end
c=int(sz2/2-64) # y start
d=int(sz2/2 64) # y end
cropImg = image[a:b,c:d] #裁剪图像
cv2.imwrite(dest,cropImg) #写入图像路径
if __name__ == '__main__':
filepath ='F:\maomi' #源图像
destpath='F:maomi_resize' # resized images saved here
CropImage4File(filepath,destpath)
二、批量处理—指定图像位置的裁剪
我这个是用来截取发票的印章区域,用于图像分割(公司的数据集保密) 各位可以用自己的增值发票裁剪。适当的更改截取区域
代码语言:javascript复制"""
处理数据集 和 标签数据集的代码:(主要是对原始数据集裁剪)
处理方式:分别处理
注意修改 输入 输出目录 和 生成的文件名
output_dir = "./label_temp"
input_dir = "./label"
"""
import cv2
import os
import sys
import time
def get_img(input_dir):
img_paths = []
for (path,dirname,filenames) in os.walk(input_dir):
for filename in filenames:
img_paths.append(path '/' filename)
print("img_paths:",img_paths)
return img_paths
def cut_img(img_paths,output_dir):
scale = len(img_paths)
for i,img_path in enumerate(img_paths):
a = "#"* int(i/1000)
b = "."*(int(scale/1000)-int(i/1000))
c = (i/scale)*100
time.sleep(0.2)
print('正在处理图像: %s' % img_path.split('/')[-1])
img = cv2.imread(img_path)
weight = img.shape[1]
if weight 1600: # 正常发票
cropImg = img[50:200, 700:1500] # 裁剪【y1,y2:x1,x2】
#cropImg = cv2.resize(cropImg, None, fx=0.5, fy=0.5,
#interpolation=cv2.INTER_CUBIC) #缩小图像
cv2.imwrite(output_dir '/' img_path.split('/')[-1], cropImg)
else: # 卷帘发票
cropImg_01 = img[30:150, 50:600]
cv2.imwrite(output_dir '/' img_path.split('/')[-1], cropImg_01)
print('{:^3.3f}%[{} {}]'.format(c,a,b))
if __name__ == '__main__':
output_dir = "../img_cut" # 保存截取的图像目录
input_dir = "../img" # 读取图片目录表
img_paths = get_img(input_dir)
print('图片获取完成 。。。!')
cut_img(img_paths,output_dir)
三、多进程(加快处理)
代码语言:javascript复制#coding: utf-8
"""
采用多进程加快处理。添加了在读取图片时捕获异常,OpenCV对大分辨率或者tif格式图片支持不好
处理数据集 和 标签数据集的代码:(主要是对原始数据集裁剪)
处理方式:分别处理
注意修改 输入 输出目录 和 生成的文件名
output_dir = "./label_temp"
input_dir = "./label"
"""
import multiprocessing
import cv2
import os
import time
def get_img(input_dir):
img_paths = []
for (path,dirname,filenames) in os.walk(input_dir):
for filename in filenames:
img_paths.append(path '/' filename)
print("img_paths:",img_paths)
return img_paths
def cut_img(img_paths,output_dir):
imread_failed = []
try:
img = cv2.imread(img_paths)
height, weight = img.shape[:2]
if (1.0 * height / weight) < 1.3: # 正常发票
cropImg = img[50:200, 700:1500] # 裁剪【y1,y2:x1,x2】
cv2.imwrite(output_dir '/' img_paths.split('/')[-1], cropImg)
else: # 卷帘发票
cropImg_01 = img[30:150, 50:600]
cv2.imwrite(output_dir '/' img_paths.split('/')[-1], cropImg_01)
except:
imread_failed.append(img_paths)
return imread_failed
def main(input_dir,output_dir):
img_paths = get_img(input_dir)
scale = len(img_paths)
results = []
pool = multiprocessing.Pool(processes = 4)
for i,img_path in enumerate(img_paths):
a = "#"* int(i/10)
b = "."*(int(scale/10)-int(i/10))
c = (i/scale)*100
results.append(pool.apply_async(cut_img, (img_path,output_dir )))
print('{:^3.3f}%[{} {}]'.format(c, a, b)) # 进度条(可用tqdm)
pool.close() # 调用join之前,先调用close函数,否则会出错。
pool.join() # join函数等待所有子进程结束
for result in results:
print('image read failed!:', result.get())
print ("All done.")
if __name__ == "__main__":
input_dir = "D:/image_person" # 读取图片目录表
output_dir = "D:/image_person_02" # 保存截取的图像目录
main(input_dir, output_dir)
以上就是本文的全部内容,希望对大家的学习有所帮助。