问题keras使用预训练模型vgg16分类,损失和准确度不变。
细节:使用keras训练一个两类数据,正负比例1:3,在vgg16后添加了几个全链接并初始化了。并且对所有层都允许训练。
但是准确度一直是0.75.
数据预先处理已经检查过格式正确
再将模型中relu改成sigmoid就正常了。
数据处理程序
代码语言:javascript复制import os
import pickle
import numpy as np
import DataFile
import SelectiveSearch
import Generator
import IoU
import Model_CRNN_VGG16
from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import ModelCheckpoint
def data_generator(gen1,gen0):
while True:
data_pos = next(gen1)
data_neg = next(gen0)
ret_X = np.vstack((data_pos[0],data_neg[0]))
ret_y = np.vstack((data_pos[1],data_neg[1]))
index = np.arange(ret_y.shape[0])
np.random.shuffle(index)
ret_X = ret_X[index, :, :, :] # X_train是训练集,y_train是训练标签
ret_y = ret_y[index]
yield ret_X,ret_y
if __name__ == "__main__":
type = "train"
# 数据生成器,每个mini-batch包含32个正样本(属于VOC 20个类别),96个负样本(background)
RESIZE = (224, 224)
path = "category_images"
categories = os.listdir(path)
categories.append('background')
print(categories)
train_1_datagen = ImageDataGenerator(
rescale=1.0/255,
#shear_range=0.2,
#zoom_range=0.2,
horizontal_flip=True)
train_1_generator = train_1_datagen.flow_from_directory(
'category_images',
target_size=RESIZE,
batch_size=32,
classes = categories)
train_0_datagen = ImageDataGenerator(
rescale=1.0 / 255,
#shear_range=0.2,
#zoom_range=0.2,
horizontal_flip=True)
train_0_generator = train_0_datagen.flow_from_directory(
'category_background',
target_size=RESIZE,
batch_size=32*3,
classes=categories)
generator = data_generator(train_1_generator,train_0_generator)
# 创建模型
model = Model_CRNN_VGG16.CRNN_Model(input_shape=(*RESIZE,3))
cnn = model.CNN(len(categories))
if os.path.exists('weights-cnn.hdf5'):
cnn.load_weights('weights-cnn.hdf5')
if type == "train":
checkpoint = ModelCheckpoint('weights-cnn.hdf5',save_weights_only=True)
cnn.fit_generator(generator = generator,steps_per_epoch=200,epochs=1000,callbacks=[checkpoint])
else:
img = next(generator)[0]
result = cnn.predict(img)
print(result)
# 训练SVM
# 非极大值抑制
# 预测
模型程序:
代码语言:javascript复制from keras.applications.vgg16 import VGG16
from keras.layers import *
from keras.models import Model
from keras.optimizers import SGD,Adam
class CRNN_Model():
def __init__(self,input_shape,trainable=True):
vgg16 = VGG16(include_top=False,weights="imagenet", input_shape=input_shape)
for layer in vgg16.layers:
layer.trainable = trainable
self.base_model = vgg16
def CNN(self,classes):
img_input = self.base_model.input
x = self.base_model.get_layer('block5_conv3').output
x = Flatten(name='crnn_flatten')(x)
x = Dense(512,activation='relu', kernel_initializer='he_normal', name='crnn_fc1')(x)
x = Dense(512,activation='relu', kernel_initializer='he_normal',name='crnn_fc2')(x)
x = Dense(classes, activation='softmax', kernel_initializer='he_normal', name='crnn_predictions')(x)
model = Model(img_input,x)
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
adam = Adam()
model.compile(optimizer=adam,
loss='categorical_crossentropy',
metrics=['accuracy'])
model.summary()
return model
if __name__ == "__main__":
pass
补充知识:val_acc一直不变
val_loss一直不变的原因
之前用keras编写了LSTM模型,做图片分类,自己划分了测试集和训练集,但是得到的结果是每个epoch训练的准确率都不变。
探索
我一直以为是我的数据的读取方式不对,我一直在从这方面下手,但是后来我发现根本不是这个原因,也找到了解决方案,具体原因有三点,三点是递进关系。
1.数据集样本各类别数量差距大
如果没有这种情况就看看第二点。
2.训练集和数据集是手动划分的,改为代码自动划分
代码如下:
X_train, X_test,Y_train, Y_test = train_test_split(data, labels, test_size=0.4, random_state=42)“`
上述方法要多设置几个epoch,要有耐心的等,如果还是测试的准确率还是不变,那就可能是第二个原因。
3. 训练模型不适用,或者模型参数不恰当,建议调参,或者改算法
如果第一个方法还是不行那就可能是算法不适合这个数据集,可以打印混淆矩阵看一下,是不是分类错误率太高,比如我的数据集,做二分类,结果第二类全分到第一类了。
以上这篇浅谈keras使用预训练模型vgg16分类,损失和准确度不变就是小编分享给大家的全部内容了,希望能给大家一个参考。