简单的代码:
代码语言:javascript复制import tensorflow as tf
In [2]: matrix1=tf.constant([[3.,3.]])
In [3]: matrix2=tf.constant([[2.],[2.]])
with tf.Session() as sess:
...: writer = tf.summary.FileWriter('./graph', sess.graph)
...: result = sess.run(tf.matmul(matrix1, matrix2))
...: writer.close()
ipython中使用! 命令可以直接运行terminal命令。
terminal输入: tensorboard –logdir graph/
跳出:Starting TensorBoard 54 at http://amax:6006
在浏览器输入地址加端口号并在graph中查看。
补充知识:tensorflow 利用保存的meta图文件生成log供tensorboard可视化 保存恢复模型
tensorboard可视化图:
代码语言:javascript复制import tensorflow as tf
g = tf.Graph()
with g.as_default() as g:
tf.train.import_meta_graph('criteo_80.meta')
with tf.Session(graph=g) as sess:
file_writer = tf.summary.FileWriter(logdir='./', graph=g)
保存恢复模型:
代码语言:javascript复制# 建模型
saver = tf.train.Saver()
with tf.Session() as sess:
# 存模型,注意此处的model是文件名非路径
saver.save(sess, "/tmp/model")
with tf.Session() as sess:
# 恢复模型
saver.restore(sess, "/tmp/model")
代码语言:javascript复制# 先恢复图
saver = tf.train.import_meta_graph("/tmp/model.meta")
with tf.Session() as sess:
# 再恢复参数
saver.restore(sess, "/tmp/model")
以上这篇TensorFlow保存TensorBoard图像操作就是小编分享给大家的全部内容了,希望能给大家一个参考。