加速深度学习在线部署,TensorRT安装及使用教程

2020-10-21 17:06:51 浏览数 (1)

1 什么是TensorRT

一般的深度学习项目,训练时为了加快速度,会使用多GPU分布式训练。但在部署推理时,为了降低成本,往往使用单个GPU机器甚至嵌入式平台(比如 NVIDIA Jetson)进行部署,部署端也要有与训练时相同的深度学习环境,如caffe,TensorFlow等。由于训练的网络模型可能会很大(比如,inception,resnet等),参数很多,而且部署端的机器性能存在差异,就会导致推理速度慢,延迟高。这对于那些高实时性的应用场合是致命的,比如自动驾驶要求实时目标检测,目标追踪等。所以为了提高部署推理的速度,出现了很多轻量级神经网络,比如squeezenet,mobilenet,shufflenet等。基本做法都是基于现有的经典模型提出一种新的模型结构,然后用这些改造过的模型重新训练,再重新部署。

而tensorRT 则是对训练好的模型进行优化。tensorRT就只是推理优化器。当你的网络训练完之后,可以将训练模型文件直接丢进tensorRT中,而不再需要依赖深度学习框架(Caffe,TensorFlow等),如下:

可以认为tensorRT是一个只有前向传播的深度学习框架,这个框架可以将 Caffe,TensorFlow的网络模型解析,然后与tensorRT中对应的层进行一一映射,把其他框架的模型统一全部 转换到tensorRT中,然后在tensorRT中可以针对NVIDIA自家GPU实施优化策略,并进行部署加速。

2 TensorRT安装

tensorrt的安装方式很简单,只需要注意一些环境的依赖关系就可以,我们以tensorrt5.0.4版本为例,参考官网安装教程https://docs.nvidia.com/deeplearning/sdk/tensorrt-install-guide/index.html,这里简单总结一下步骤

tensorrt支持的环境和python版本如表所示

2.1 环境确认

  • 确认CUDA版本是9.0或者10.0,可通过运行nvcc -V指令来查看CUDA,如果不是9.0以上,则需要先把CUDA版本更新一下nn
  • cudnn版本是7.3.1,如果不满足要求,按照《Linux之cudnn升级方法》进行升级
  • 需安装有tensorflow,uff模块需要

2.2 安装pycuda

如果要使用python接口的tensorrt,则需要安装pycuda

2.3 下载安装包

  1. 进入下载链接https://developer.nvidia.com/nvidia-tensorrt-download
  2. 点击Download Now(需要登录英伟达账号,没有的注册一个)
  3. 选择下载的版本(最新TensorRT5)
  4. 完成问卷调查
  5. 选择同意协议
  6. 根据自己的系统版本和CUDA版本,选择安装包,如图所示(如果是完整安装,建议选择Tar File Install Packages,这样可以自行选择安装位置)

2.4 安装指令

如果要使用python版本,则使用pip安装,执行下边的指令

为了避免安装时各种问题,我们也可以使用deb包的方式安装,即在2.3步骤中选择自己系统对应的版本,然后使用如下指令安装

2.5 环境测试

运行python测试,导入模块不报错就表明安装正确

注意:导入uff的时候需要安装tensorflow模块,tensorflow版本要与cuda版本对应,比如cuda9要对应tensorflow1.12及以下版本,以上版本需要cuda10,具体参考官网

如果导入tensorrt报错如下,则是因为python版本不对,应根据2.1节上边的那个表调整自己的python版本

3 使用流程

在/TensoRT-5.0.2.6/samples/python文件夹下有很多python的例子,我们以第一个end_to_end_tensorflow_mnist的例子为例,描述tensorrt的使用流程,在README.md文件里也说得很明白了

3.1 安装依赖

需要安装好numpy、Pillow、pycuda、tensorflow等环境,如果都有可以跳过

3.2 生成pb文件

运行model.py后,会下载数据mnist.npz,并开始训练,完成后在models文件夹下生成lenet5.pb文件,如果自己已经训练得到pb文件,上述过程可以跳过

3.3 格式转化

要将tensorflow的pb文件转化为uff格式的文件,首先找到convert_to_uff文件,看自己用的是哪个版本的python,如果是python3,则在/usr/lib/python3.5/dist-packages/uff/bin文件夹下,如果是python2,则在/usr/lib/python2.7/dist-packages/uff/bin文件夹下

我们在终端中进入end_to_end_tensorflow_mnist,运行以下指令

需要注意的是:该转化过程只支持在x86平台上实现,如果想在TX2等嵌入式平台上使用tensorrt,需要先在x86平台上将pb模型转化为uff文件,然后再拷贝到TX2上使用

3.4 运行文件

运行sample.py文件,得到如下输出,表明可完整的使用tensorrt

参考文章

通过pytorch搭建卷积神经网络完成手写识别任务,并将训练好的模型以多种方式部署到TensorRT中加速

https://github.com/GuanLianzheng/pytorch_to_TensorRT5

TensorRT之TX2部署TensorFlow目标检测模型

https://blog.csdn.net/zong596568821xp/article/details/86077553

TensorRT安装及使用教程

https://arleyzhang.github.io/articles/7f4b25ce/

0 人点赞