来源:人工智能AI技术
作者:唐杰教授
编辑:AI数据派
本文约1850字44图,建议阅读9分钟。
本文从人工智能发展的历史开始,深入分析人工智能近十年的发展,阐述了人工智能在感知方面取得的重要成果。
唐杰教授从人工智能发展的历史开始,深入分析人工智能近十年的发展,阐述了人工智能在感知方面取得的重要成果,尤其提到算法是这个感知时代最重要、最具代表性的内容。
重点讲解了 BERT、ALBERT、MoCo2 等取得快速进展的算法。最后说到下一波人工智能浪潮的兴起,就是实现具有推理、可解释性、认知的人工智能。
人工智能对社会和经济影响的日益凸显,各国政府也先后出台了对人工智能发展的政策,并将其上升到国家战略的高度。截至目前,包括美国、中国和欧盟在内的多国和地区颁布了国家层面的人工智能发展政策。
在这个时代背景下,我们需要考虑人工智能未来十年会怎样发展。首先,我们需要从人工智能的发展历史中找到灵感。
我们再深入分析 AI 近十年的发展,会看到一个重要的标志:人工智能在感知方面取得重要成果。人工智能在语音识别、文本识别、视频识别等方面已经超越了人类,我们可以说 AI 在感知方面已经逐渐接近人类的水平。从未来的趋势来看,人工智能将会有一个从感知到认知逐步发展的基本趋势,如下图所示:
首先,我们来看看 AI 在感知方面做了哪些事情。在感知方面,AlphaGo、无人驾驶、文本和图片之间的跨媒体计算等取得了快速发展。从宏观来看,算法是这个感知时代最重要、最具代表性的内容。如果把最近十年的重要算法进行归类,以深度学习为例进行展示的话,我们可以得到下图所示的发展脉络。
这里,我想引用张钹院士提出来的第三代人工智能的理论体系。
2015 年,张钹院士提出第三代人工智能体系的雏形。
2017 年,DARPA 发起 XAI 项目,核心思想是从可解释的机器学习系统、人机交互技术以及可解释的心理学理论三个方面,全面开展可解释性 AI 系统的研究。
2018 年底,正式公开提出第三代人工智能的理论框架体系,核心思想为:
建立可解释、鲁棒性的人工智能理论和方法。发展安全、可靠、可信及可扩展的人工智能技术。推动人工智能创新应用。其中具体实施的路线图如下:
与脑科学融合,发展脑启发的人工智能理论。数据与知识融合的人工智能理论与方法。在这个思想框架下,我们做了一定的深入研究,我们称之为认知图谱。其核心概念是知识图谱 认知推理 逻辑表达。
当我们用传统算法(如 BIDAF, BERT, XLNet)进行解决的时候,计算机可能只会找到局部的片段,仍然缺乏一个在知识层面上的推理能力,这是计算机很欠缺的。人在这方面具有优势,而计算机缺乏类似的能力。
人在解决上述问题的过程中存在推理路径、推理节点,并且能理解整个过程,而 AI 系统,特别是在当下的 AI 系统中,深度学习算法将大部分这类问题都看作是一个黑盒子,如下图所示:
这个基本的思想是结合认知科学中的双通道理论。在人脑的认知系统中存在两个系统:System 1 和 System 2,如下图所示。System 1 是一个直觉系统,它可以通过人对相关信息的一个直觉匹配寻找答案,它是非常快速、简单的;而 System 2 是一个分析系统,它通过一定的推理、逻辑找到答案。
在去年的 NIPS 上,图灵奖获得者 Bengio 在大会主旨报告的 Keynote 也提到,System 1 到 System 2 的认知是深度学习未来发展的重要的方向,如下图所示:
因此,我们大概用这个思路构建了这个新的、我们称为认知图谱的这样一个方法。在 System 1 中我们主要做知识的扩展,在 System 2 中我们做逻辑推理和决策,如下图所示:
可以看到,我们在 System 1 中做知识的扩展,比如说针对前面的问题,我们首先找到相关的影片,然后用 System 2 来做决策。如果是标准答案,就结束整个推理的过程。如果不是标准答案,而相应的信息又有用,我们就把它作为一个有用信息提供给 System 1,System 1 继续做知识的扩展,System 2 再来做决策,直到最终找到答案。
现在,在这两个系统中,System 1 是一个直觉系统,我们用 BERT 来实现,实现了以后,我们就可以做相关的信息的匹配;System 2 就用一个图卷积网络来实现,在图卷积网络中可以做一定的推理和决策。通过这个思路,我们就可以实现一定的推理 决策。
这是一个总体的思路,要真正实现知识和推理,其实还需要万亿级的常识知识库的支持,如下图所示。也就是说,四五十年前费根鲍姆做过的事情,也许我们现在要重做一遍,但是我们要做到更大规模的常识知识图谱,并且用这样的方法,用这样的常识知识图谱来支撑上面的深度学习的计算,这样才能真正实现未来的 AI。
所以说,这一代人工智能浪潮也许到终点还是没有推理能力,没有可解释能力。而下一波人工智能浪潮的兴起,就是实现具有推理、具有可解释性、具有认知的人工智能,我们认为这是 AI 下一个 10 年要发展、也一定会发展的一个重要方向。