最长公共子序列

2023-09-23 17:39:08 浏览数 (1)

最长公共子序列(Longest Commom Subsequence)

问题:最长公共子序列(Longest Commom Subsequence, LCS)查找以相同顺序在给定两个序列中存在的最长子序列的问题。

与子字符串不同,不需要子序列占据原始序列中的连续位置。

例如:

X:ABCBDAB

Y:BDCABA

那么,序列A和序列B的:

  • 最长公共子序列的长度为4
  • 最长公共子序列:BDAB、BCAB、BCBA

朴素解法

检查X[1..m]的每个子序列是否也是Y[1..n]的子序列。

由于X可能有2m个子序列,因此该解放方法的复杂度将为O(n*2m)。

LCS问题的最优子结构

代码语言:javascript复制
class LCS
{
    // Function to find length of Longest Common Subsequence of
    // sequences X[0..m-1] and Y[0..n-1]
    public static int LCSLength(String X, String Y, int m, int n)
    {
        // return if we have reached the end of either sequence
        if (m == 0 || n == 0) {
            return 0;
        }

        // if last character of X and Y matches
        if (X.charAt(m - 1) == Y.charAt(n - 1)) {
            return LCSLength(X, Y, m - 1, n - 1)   1;
        }

        // else if last character of X and Y don't match
        return Integer.max(LCSLength(X, Y, m, n - 1),
                        LCSLength(X, Y, m - 1, n));
    }

    // main function
    public static void main(String[] args)
    {
        String X = "ABCBDAB", Y = "BDCABA";

        System.out.print("The length of LCS is "
                  LCSLength(X, Y, X.length(), Y.length()));
    }
}
代码语言:javascript复制
import java.util.HashMap;
import java.util.Map;

class LCS
{
    // Function to find length of Longest Common Subsequence of substring
    // X[0..m-1] and Y[0..n-1]
    public static int LCSLength(String X, String Y, int m, int n,
                                Map<String, Integer> lookup)
    {
        // return if we have reached the end of either string
        if (m == 0 || n == 0)
            return 0;

        // construct an unique map key from dynamic elements of the input
        String key = m   "|"   n;

        // if sub-problem is seen for the first time, solve it and
        // store its result in a map
        if (!lookup.containsKey(key))
        {
            // if last character of X and Y matches
            if (X.charAt(m - 1) == Y.charAt(n - 1)) {
                lookup.put(key, LCSLength(X, Y, m - 1, n - 1, lookup)   1);

            }
            else {
                // else if last character of X and Y don't match
                lookup.put(key, Integer.max(LCSLength(X, Y, m, n-1, lookup),
                        LCSLength(X, Y, m-1, n, lookup)));
            }
        }

        // return the subproblem solution from the map
        return lookup.get(key);
    }

    // main function
    public static void main(String[] args)
    {
        String X = "ABCBDAB", Y = "BDCABA";

        // create a map to store solutions of subproblems
        Map<String, Integer> lookup = new HashMap<>();

        System.out.print("The length of LCS is "
                  LCSLength(X, Y, X.length(), Y.length(), lookup));
    }
}
代码语言:javascript复制
class LCS
{
    // Function to find length of Longest Common Subsequence of substring
    // X[0..m-1] and Y[0..n-1]
    public static int LCSLength(String X, String Y)
    {
        int m = X.length(), n = Y.length();

        // lookup table stores solution to already computed sub-problems
        // i.e. T[i][j] stores the length of LCS of substring
        // X[0..i-1] and Y[0..j-1]
        int[][] T = new int[m   1][n   1];

        // fill the lookup table in bottom-up manner
        for (int i = 1; i <= m; i  )
        {
            for (int j = 1; j <= n; j  )
            {
                // if current character of X and Y matches
                if (X.charAt(i - 1) == Y.charAt(j - 1)) {
                    T[i][j] = T[i - 1][j - 1]   1;
                }
                // else if current character of X and Y don't match,
                else {
                    T[i][j] = Integer.max(T[i - 1][j], T[i][j - 1]);
                }
            }
        }

        // LCS will be last entry in the lookup table
        return T[m][n];
    }

    // main function
    public static void main(String[] args)
    {
        String X = "XMJYAUZ", Y = "MZJAWXU";

        System.out.print("The length of LCS is "   LCSLength(X, Y));
    }
}
  1. [Longest Common Subsquence](https://www.techiedelight.com/longest-common-subsequence/
  2. Dynamic-programming from novice to advanced

0 人点赞