Flink SQL 自定义 Sink

2020-10-26 16:26:39 浏览数 (1)

1.背景

内部要做 Flink SQL 平台,本文以自定义 Redis Sink 为例来说明 Flink SQL 如何自定义 Sink 以及自定义完了之后如何使用 基于 Flink 1.11

2.步骤

  1. implements DynamicTableSinkFactory
  2. implements DynamicTableSink
  3. 创建 Redis Sink

3.自定义 sink 代码

代码语言:javascript复制
import com.ishansong.bigdata.common.util.redis.RedisUtil;
import org.apache.flink.configuration.ConfigOption;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.configuration.ReadableConfig;
import org.apache.flink.streaming.api.functions.sink.PrintSinkFunction;
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;
import org.apache.flink.table.connector.ChangelogMode;
import org.apache.flink.table.connector.sink.DynamicTableSink;
import org.apache.flink.table.connector.sink.DynamicTableSink.DataStructureConverter;
import org.apache.flink.table.connector.sink.SinkFunctionProvider;
import org.apache.flink.table.data.RowData;
import org.apache.flink.table.factories.DynamicTableSinkFactory;
import org.apache.flink.table.factories.FactoryUtil;
import org.apache.flink.table.types.DataType;
import org.apache.flink.table.types.logical.RowType;
import org.apache.flink.types.Row;
import org.apache.flink.types.RowKind;
import redis.clients.jedis.JedisCluster;

import java.util.*;

import static org.apache.flink.configuration.ConfigOptions.key;


/**
 * @author shengjk1
 * @date 2020/10/16
 */
public class RedisTableSinkFactory implements DynamicTableSinkFactory {
	
	public static final String IDENTIFIER = "redis";
	
	public static final ConfigOption<String> HOST_PORT = key("hostPort")
			.stringType()
			.noDefaultValue()
			.withDescription("redis host and port,");
	
	public static final ConfigOption<String> PASSWORD = key("password")
			.stringType()
			.noDefaultValue()
			.withDescription("redis password");
	
	public static final ConfigOption<Integer> EXPIRE_TIME = key("expireTime")
			.intType()
			.noDefaultValue()
			.withDescription("redis key expire time");
	
	public static final ConfigOption<String> KEY_TYPE = key("keyType")
			.stringType()
			.noDefaultValue()
			.withDescription("redis key type,such as hash,string and so on ");
	
	public static final ConfigOption<String> KEY_TEMPLATE = key("keyTemplate")
			.stringType()
			.noDefaultValue()
			.withDescription("redis key template ");
	
	public static final ConfigOption<String> FIELD_TEMPLATE = key("fieldTemplate")
			.stringType()
			.noDefaultValue()
			.withDescription("redis field template ");
	
	
	public static final ConfigOption<String> VALUE_NAMES = key("valueNames")
			.stringType()
			.noDefaultValue()
			.withDescription("redis value name ");
	
	@Override
	// 当 connector 与 IDENTIFIER 一直才会找到 RedisTableSinkFactory 通过 
	public String factoryIdentifier() {
		return IDENTIFIER;
	}
	
	@Override
	public Set<ConfigOption<?>> requiredOptions() {
		return new HashSet<>();
	}
	
	@Override
	//我们自己定义的所有选项 (with 后面的 ) 都会在这里获取
	public Set<ConfigOption<?>> optionalOptions() {
		Set<ConfigOption<?>> options = new HashSet<>();
		options.add(HOST_PORT);
		options.add(PASSWORD);
		options.add(EXPIRE_TIME);
		options.add(KEY_TYPE);
		options.add(KEY_TEMPLATE);
		options.add(FIELD_TEMPLATE);
		options.add(VALUE_NAMES);
		return options;
	}
	
	@Override
	public DynamicTableSink createDynamicTableSink(Context context) {
		FactoryUtil.TableFactoryHelper helper = FactoryUtil.createTableFactoryHelper(this, context);
		helper.validate();
		ReadableConfig options = helper.getOptions();
		return new RedisSink(
				context.getCatalogTable().getSchema().toPhysicalRowDataType(),
				options);
	}
	
	
	private static class RedisSink implements DynamicTableSink {
		
		private final DataType type;
		private final ReadableConfig options;
		
		private RedisSink(DataType type, ReadableConfig options) {
			this.type = type;
			this.options = options;
		}
		
		@Override
		//ChangelogMode 
		public ChangelogMode getChangelogMode(ChangelogMode requestedMode) {
			return requestedMode;
		}
		
		@Override
		//具体运行的地方,真正开始调用用户自己定义的 streaming sink ,建立 sql 与 streaming 的联系
		public SinkRuntimeProvider getSinkRuntimeProvider(Context context) {
			DataStructureConverter converter = context.createDataStructureConverter(type);
			return SinkFunctionProvider.of(new RowDataPrintFunction(converter, options, type));
		}
		
		@Override
		// sink 可以不用实现,主要用来 source 的谓词下推
		public DynamicTableSink copy() {
			return new RedisSink(type, options);
		}
		
		@Override
		public String asSummaryString() {
			return "redis";
		}
	}
	
	/**
	 同 flink streaming 自定义 sink ,只不过我们这次处理的是 RowData,不细说
	 */
	private static class RowDataPrintFunction extends RichSinkFunction<RowData> {
		
		private static final long serialVersionUID = 1L;
		
		private final DataStructureConverter converter;
		private final ReadableConfig options;
		private final DataType type;
		private RowType logicalType;
		private HashMap<String, Integer> fields;
		private JedisCluster jedisCluster;
		
		private RowDataPrintFunction(
				DataStructureConverter converter, ReadableConfig options, DataType type) {
			this.converter = converter;
			this.options = options;
			this.type = type;
		}
		
		@Override
		public void open(Configuration parameters) throws Exception {
			super.open(parameters);
			logicalType = (RowType) type.getLogicalType();
			fields = new HashMap<>();
			List<RowType.RowField> rowFields = logicalType.getFields();
			int size = rowFields.size();
			for (int i = 0; i < size; i  ) {
				fields.put(rowFields.get(i).getName(), i);
			}
			
			jedisCluster = RedisUtil.getJedisCluster(options.get(HOST_PORT));
		}
		
		@Override
		/*
		2>  I(1,30017323,1101)
		2> -U(1,30017323,1101)
		2>  U(2,30017323,1101)
		2> -U(2,30017323,1101)
		2>  U(3,30017323,1101)
		2> -U(3,30017323,1101)
		2>  U(4,30017323,1101)
		3> -U(3,980897,3208)
		3>  U(4,980897,3208)
		 */
		public void invoke(RowData rowData, Context context) {
			RowKind rowKind = rowData.getRowKind();
			Row data = (Row) converter.toExternal(rowData);
			if (rowKind.equals(RowKind.UPDATE_AFTER) || rowKind.equals(RowKind.INSERT)) {
				
				String keyTemplate = options.get(KEY_TEMPLATE);
				if (Objects.isNull(keyTemplate) || keyTemplate.trim().length() == 0) {
					throw new NullPointerException(" keyTemplate is null or keyTemplate is empty");
				}
				
				if (keyTemplate.contains("${")) {
					String[] split = keyTemplate.split("\$\{");
					keyTemplate = "";
					for (String s : split) {
						if (s.contains("}")) {
							String filedName = s.substring(0, s.length() - 1);
							int index = fields.get(filedName);
							keyTemplate = keyTemplate   data.getField(index).toString();
						} else {
							keyTemplate = keyTemplate   s;
						}
					}
				}
				
				String keyType = options.get(KEY_TYPE);
				String valueNames = options.get(VALUE_NAMES);
				// type=hash must need fieldTemplate
				if ("hash".equalsIgnoreCase(keyType)) {
					String fieldTemplate = options.get(FIELD_TEMPLATE);
					if (fieldTemplate.contains("${")) {
						String[] split = fieldTemplate.split("\$\{");
						fieldTemplate = "";
						for (String s : split) {
							if (s.contains("}")) {
								String fieldName = s.substring(0, s.length() - 1);
								int index = fields.get(fieldName);
								fieldTemplate = fieldTemplate   data.getField(index).toString();
							} else {
								fieldTemplate = fieldTemplate   s;
							}
						}
					}
					
					//fieldName = fieldTemplate-valueName
					if (valueNames.contains(",")) {
						HashMap<String, String> map = new HashMap<>();
						String[] fieldNames = valueNames.split(",");
						for (String fieldName : fieldNames) {
							String value = data.getField(fields.get(fieldName)).toString();
							map.put(fieldTemplate   "_"   fieldName, value);
						}
						jedisCluster.hset(keyTemplate, map);
					} else {
						jedisCluster.hset(keyTemplate, fieldTemplate   "_"   valueNames, data.getField(fields.get(valueNames)).toString());
					}
					
				} else if ("set".equalsIgnoreCase(keyType)) {
					jedisCluster.set(keyTemplate, data.getField(fields.get(valueNames)).toString());
					
				} else if ("sadd".equalsIgnoreCase(keyType)) {
					jedisCluster.sadd(keyTemplate, data.getField(fields.get(valueNames)).toString());
				} else if ("zadd".equalsIgnoreCase(keyType)) {
					jedisCluster.sadd(keyTemplate, data.getField(fields.get(valueNames)).toString());
				} else {
					throw new IllegalArgumentException(" not find this keyType:"   keyType);
				}
				
				if (Objects.nonNull(options.get(EXPIRE_TIME))) {
					jedisCluster.expire(keyTemplate, options.get(EXPIRE_TIME));
				}
			}
		}
	}
}

4.使用 Redis Sink

代码语言:javascript复制
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.api.java.typeutils.TupleTypeInfo;
import org.apache.flink.api.scala.typeutils.Types;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.CheckpointingMode;
import org.apache.flink.streaming.api.environment.ExecutionCheckpointingOptions;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;

import java.time.Duration;

/**
 * @author shengjk1
 * @date 2020/9/25
 */
public class SqlKafka {
	public static void main(String[] args) throws Exception {
		StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
		
		EnvironmentSettings environmentSettings = EnvironmentSettings.newInstance().useBlinkPlanner().inStreamingMode().build();
		StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env, environmentSettings);
		// enable checkpointing
		Configuration configuration = tableEnv.getConfig().getConfiguration();
		configuration.set(
				ExecutionCheckpointingOptions.CHECKPOINTING_MODE, CheckpointingMode.EXACTLY_ONCE);
		configuration.set(
				ExecutionCheckpointingOptions.CHECKPOINTING_INTERVAL, Duration.ofSeconds(10));
		
		String sql = "CREATE TABLE sourcedata (`id` bigint,`status` int,`city_id` bigint,`courier_id` bigint,info_index int,order_id bigint,tableName String"  
				") WITH ("  
				"'connector' = 'kafka','topic' = 'xxx',"  
				"'properties.bootstrap.servers' = 'xxx','properties.group.id' = 'testGroup',"  
				"'format' = 'json','scan.startup.mode' = 'earliest-offset')";
		tableEnv.executeSql(sql);
		
		//15017284 distinct
		Table bigtable = tableEnv.sqlQuery("select distinct a.id,a.courier_id,a.status,a.city_id,b.info_index from (select id,status,city_id,courier_id from sourcedata where tableName = 'orders' and status=60)a join (select "  
				" order_id,max(info_index)info_index from sourcedata  where tableName = 'infos'  group by order_id )b on a.id=b.order_id");

		sql = "CREATE TABLE redis (info_index BIGINT,courier_id BIGINT,city_id BIGINT"  
				") WITH ("  
				"'connector' = 'redis',"  
				"'hostPort'='xxx',"  
				"'keyType'='hash',"  
				"'keyTemplate'='test2_${city_id}',"  
				"'fieldTemplate'='test2_${courier_id}',"  
				"'valueNames'='info_index,city_id',"  
				"'expireTime'='1000')";
			
		tableEnv.executeSql(sql);
		
		Table resultTable = tableEnv.sqlQuery("select sum(info_index)info_index,courier_id,city_id from "   bigtable   " group by city_id,courier_id");
		TupleTypeInfo<Tuple3<Long, Long, Long>> tupleType = new TupleTypeInfo<>(
				Types.LONG(),
				Types.LONG(),
				Types.LONG());
		tableEnv.toRetractStream(resultTable, tupleType).print("===== ");
		tableEnv.executeSql("INSERT INTO redis SELECT info_index,courier_id,city_id FROM "   resultTable);
        env.execute("");
	}
}

5.详细解释

代码语言:javascript复制
create table test(
`id` bigint,
 `url` string,
 `day` string,
  `pv` long,
  `uv` long
) with {
    'connector'='redis',
    'hostPort'='xxx',
    'password'='',
    'expireTime'='100',
    'keyType'='hash',
    'keyTemplate'='test_${id}',
    'fieldTemplate'='${day}',
    'valueNames'='pv,uv',
}

redis result: 假设 id=1 day=20201016 pv=20,uv=20
    hash
    test_1 20201016-pv 20,20201016-uv 20

参数解释:
connector  固定写法
hostPort   redis 的地址
password   redis 的密码
expireTime  redis key 过期时间,单位为 s
keyType  redis key 的类型,目前有 hash、set、sadd、zadd
keyTemplate  redis key 的表达式,如 test_${id} 注意 id 为表的字段名
fieldTemplate  redis keyType==hash 时,此选项为必选,表达式规则同 keyTemplate
valueNames  redis value  only 可以有多个

6.原理

  1. 整个流程如图,CatalogTable —> DynamicTableSource and DynamicTableSink 这个过程中,其实是通过 DynamicTableSourceFactory and DynamicTableSinkFactory 起到了一个桥梁的作用
  2. (Source/Sink)Factory 通过 connector=‘xxx’ 找到,理论上会做三种操作 1. validate options 2. configure encoding/decoding formats( if required ) 3. create a parameterized instance of the table connector 其中 formats 是通过 format=‘xxx’ 找到
  3. DynamicTableSource DynamicTableSink 官网虽说可以看做是有状态的,但是否真的有状态取决于具体实现的 source 和 sink
  4. 生成 Runtime logic,Runtime logic 被 Flink core connector interfaces( 如 InputFormat or SourceFunction),如果是 kafka 的话 则 是 FlinkKafkaConsumer 实现,而这些实现又被抽象为 *Provider,然后开始执行 *Provider
  5. *Provider 是连接 SQL 与 Streaming 代码级别的桥梁

7.参考

https://ci.apache.org/projects/flink/flink-docs-release-1.11/dev/table/sourceSinks.html

0 人点赞