更快的优化器
训练一个非常大的深度神经网络可能会非常缓慢。 到目前为止,我们已经看到了四种加速训练的方法(并且达到更好的解决方案):对连接权重应用良好的初始化策略,使用良好的激活函数,使用批量规范化以及重用预训练网络的部分。 另一个巨大的速度提升来自使用比普通渐变下降优化器更快的优化器。 在本节中,我们将介绍最流行的:动量优化,Nesterov 加速梯度,AdaGrad,RMSProp,最后是 Adam 优化。
剧透:本节的结论是,您几乎总是应该使用Adam_optimization
,所以如果您不关心它是如何工作的,只需使用AdamOptimizer
替换您的GradientDescentOptimizer
,然后跳到下一节! 只需要这么小的改动,训练通常会快几倍。 但是,Adam 优化确实有三个可以调整的超参数(加上学习率)。 默认值通常工作的不错,但如果您需要调整它们,知道他们怎么实现的可能会有帮助。 Adam 优化结合了来自其他优化算法的几个想法,所以先看看这些算法是有用的。
动量优化
想象一下,一个保龄球在一个光滑的表面上平缓的斜坡上滚动:它会缓慢地开始,但是它会很快地达到最终的速度(如果有一些摩擦或空气阻力的话)。 这是 Boris Polyak 在 1964 年提出的动量优化背后的一个非常简单的想法。相比之下,普通的梯度下降只需要沿着斜坡进行小的有规律的下降步骤,所以需要更多的时间才能到达底部。
回想一下,梯度下降只是通过直接减去损失函数J(θ)
相对于权重θ
的梯度,乘以学习率η
来更新权重θ
。 方程是:θ ← θ – η∇θJ(θ)。它不关心早期的梯度是什么。 如果局部梯度很小,则会非常缓慢。
动量优化很关心以前的梯度:在每次迭代时,它将动量矢量m
(乘以学习率η
)与局部梯度相加,并且通过简单地减去该动量矢量来更新权重(参见公式 11-4)。 换句话说,梯度用作加速度,不用作速度。 为了模拟某种摩擦机制,避免动量过大,该算法引入了一个新的超参数β
,简称为动量,它必须设置在 0(高摩擦)和 1(无摩擦)之间。 典型的动量值是 0.9。
公式11-4 动量算法
您可以很容易地验证,如果梯度保持不变,则最终速度(即,权重更新的最大大小)等于该梯度乘以学习率η
乘以1/(1-β)
。 例如,如果β = 0.9
,则最终速度等于学习率的梯度乘以 10 倍,因此动量优化比梯度下降快 10 倍! 这使动量优化比梯度下降快得多。 特别是,我们在第四章中看到,当输入量具有非常不同的尺度时,损失函数看起来像一个细长的碗(见图 4-7)。 梯度下降速度很快,但要花很长的时间才能到达底部。 相反,动量优化会越来越快地滚下山谷底部,直到达到底部(最佳)。
在不使用批标准化的深层神经网络中,较高层往往会得到具有不同的尺度的输入,所以使用动量优化会有很大的帮助。 它也可以帮助滚过局部最优值。
由于动量的原因,优化器可能会超调一些,然后再回来,再次超调,并在稳定在最小值之前多次振荡。 这就是为什么在系统中有一点摩擦的原因之一:它消除了这些振荡,从而加速了收敛。
在 TensorFlow 中实现动量优化是一件简单的事情:只需用MomentumOptimizer
替换GradientDescentOptimizer
,然后躺下来赚钱!
optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate,
momentum=0.9)
动量优化的一个缺点是它增加了另一个超参数来调整。 然而,0.9 的动量值通常在实践中运行良好,几乎总是比梯度下降快。
Nesterov 加速梯度
Yurii Nesterov 在 1983 年提出的动量优化的一个小变体几乎总是比普通的动量优化更快。 Nesterov 动量优化或 Nesterov 加速梯度(Nesterov Accelerated Gradient,NAG)的思想是测量损失函数的梯度不是在局部位置,而是在动量方向稍微靠前(见公式 11-5)。 与普通的动量优化的唯一区别在于梯度是在θ βm
而不是在θ
处测量的。
公式11-5 Nesterov加速梯度算法
这个小小的调整是可行的,因为一般来说,动量矢量将指向正确的方向(即朝向最优方向),所以使用在该方向上测得的梯度稍微更精确,而不是使用 原始位置的梯度,如图11-6所示(其中∇1
代表在起点θ
处测量的损失函数的梯度,∇2
代表位于θ βm
的点处的梯度)。
图11-6 常规vsNesterov动量优化
正如你所看到的,Nesterov 更新稍微靠近最佳值。 过了一段时间,这些小的改进加起来,NAG 最终比常规的动量优化快得多。 此外,请注意,当动量推动权重横跨山谷时,▽1继续推进越过山谷,而▽2推回山谷的底部。 这有助于减少振荡,从而更快地收敛。
与常规的动量优化相比,NAG 几乎总能加速训练。 要使用它,只需在创建MomentumOptimizer
时设置use_nesterov = True
:
optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate,
momentum=0.9, use_nesterov=True)
AdaGrad
再次考虑细长碗的问题:梯度下降从最陡峭的斜坡快速下降,然后缓慢地下到谷底。 如果算法能够早期检测到这个问题并且纠正它的方向来指向全局最优点,那将是非常好的。
AdaGrad 算法通过沿着最陡的维度缩小梯度向量来实现这一点(见公式 11-6):
公式11-6 AdaGrad算法
第一步将梯度的平方累加到矢量s
中(⊗符号表示单元乘法)。 这个向量化形式相当于向量s
的每个元素si
计算si ← si (∂ / ∂ θi J(θ))2。换一种说法,每个 si 累加损失函数对参数θi的偏导数的平方。 如果损失函数沿着第i
维陡峭,则在每次迭代时, si 将变得越来越大。
第二步几乎与梯度下降相同,但有一个很大的不同:梯度矢量按比例缩小 (s ε)^0.5(⊘符号表示元素分割,ε
是避免被零除的平滑项,通常设置为10-10。 这个矢量化的形式相当于所有θi同时计算
简而言之,这种算法会降低学习速度,但对于陡峭的尺寸,其速度要快于具有温和的斜率的尺寸。 这被称为自适应学习率。 它有助于将更新的结果更直接地指向全局最优(见图 11-7)。 另一个好处是它不需要那么多的去调整学习率超参数η
。
图11-7 AdaGard vs 梯度下降
对于简单的二次问题,AdaGrad 经常表现良好,但不幸的是,在训练神经网络时,它经常停止得太早。 学习率被缩减得太多,以至于在达到全局最优之前,算法完全停止。 所以,即使 TensorFlow 有一个AdagradOptimizer
,你也不应该用它来训练深度神经网络(虽然对线性回归这样简单的任务可能是有效的)。
RMSProp
尽管 AdaGrad 的速度变慢了一点,并且从未收敛到全局最优,但是 RMSProp 算法通过仅累积最近迭代(而不是从训练开始以来的所有梯度)的梯度来修正这个问题。 它通过在第一步中使用指数衰减来实现(见公式 11-7)。
公式11-7 RMSProp算法
它的衰变率β
通常设定为 0.9。 是的,它又是一个新的超参数,但是这个默认值通常运行良好,所以你可能根本不需要调整它。
正如您所料,TensorFlow 拥有一个RMSPropOptimizer
类:
optimizer = tf.train.RMSPropOptimizer(learning_rate=learning_rate,
momentum=0.9, decay=0.9, epsilon=1e-10)
除了非常简单的问题,这个优化器几乎总是比 AdaGrad 执行得更好。 它通常也比动量优化和 Nesterov 加速梯度表现更好。 事实上,这是许多研究人员首选的优化算法,直到 Adam 优化出现。
Adam 优化
Adam,代表自适应矩估计,结合了动量优化和 RMSProp 的思想:就像动量优化一样,它追踪过去梯度的指数衰减平均值,就像 RMSProp 一样,它跟踪过去平方梯度的指数衰减平均值 (见方程式 11-8)。
公式11-8 Adam算法
T 代表迭代次数(从 1 开始)。
如果你只看步骤 1, 2 和 5,你会注意到 Adam 与动量优化和 RMSProp 的相似性。 唯一的区别是第 1 步计算指数衰减的平均值,而不是指数衰减的和,但除了一个常数因子(衰减平均值只是衰减和的1 - β1
倍)之外,它们实际上是等效的。 步骤 3 和步骤 4 是一个技术细节:由于m
和s
初始化为 0,所以在训练开始时它们会偏向0,所以这两步将在训练开始时帮助提高m
和s
。
动量衰减超参数β1
通常初始化为 0.9,而缩放衰减超参数β2
通常初始化为 0.999。 如前所述,平滑项ε
通常被初始化为一个很小的数,例如10-8。这些是 TensorFlow 的AdamOptimizer
类的默认值,所以你可以简单地使用:
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
实际上,由于 Adam 是一种自适应学习率算法(如 AdaGrad 和 RMSProp),所以对学习率超参数η
的调整较少。 您经常可以使用默认值η= 0.001
,使 Adam 更容易使用相对于梯度下降。
笔记: 迄今为止所讨论的所有优化技术都只依赖于一阶偏导数(雅可比矩阵)。 优化文献包含基于二阶偏导数(海森矩阵)的惊人算法。 不幸的是,这些算法很难应用于深度神经网络,因为每个输出有
n ^ 2
个海森值(其中n
是参数的数量),而不是每个输出只有n
个雅克比值。 由于 DNN 通常具有数以万计的参数,二阶优化算法通常甚至不适合内存,甚至在他们这样做时,计算海森矩阵也是太慢了。
训练稀疏模型
所有刚刚提出的优化算法都会产生密集的模型,这意味着大多数参数都是非零的。 如果你在运行时需要一个非常快速的模型,或者如果你需要它占用较少的内存,你可能更喜欢用一个稀疏模型来代替。
实现这一点的一个微不足道的方法是像平常一样训练模型,然后摆脱微小的权重(将它们设置为 0)。
另一个选择是在训练过程中应用强 l1 正则化,因为它会推动优化器尽可能多地消除权重(如第 4 章关于 Lasso 回归的讨论)。
但是,在某些情况下,这些技术可能仍然不足。 最后一个选择是应用双重平均,通常称为遵循正则化领导者(FTRL),一种由尤里·涅斯捷罗夫(Yurii Nesterov)提出的技术。 当与 l1 正则化一起使用时,这种技术通常导致非常稀疏的模型。 TensorFlow 在FTRLOptimizer
类中实现称为 FTRL-Proximal 的 FTRL 变体。
学习率调整
找到一个好的学习速度可能会非常棘手。 如果设置太高,训练实际上可能偏离(如我们在第 4 章)。 如果设置得太低,训练最终会收敛到最佳状态,但这需要很长时间。 如果将其设置得太高,开始的进度会非常快,但最终会在最优解周围跳动,永远不会安顿下来(除非您使用自适应学习率优化算法,如 AdaGrad,RMSProp 或 Adam,但是 即使这样可能需要时间来解决)。 如果您的计算预算有限,那么您可能必须在正确收敛之前中断训练,产生次优解决方案(参见图 11-8)。
图11-8 不同学习速率的学习曲线
通过使用各种学习率和比较学习曲线,在几个迭代内对您的网络进行多次训练,您也许能够找到相当好的学习率。 理想的学习率将会快速学习并收敛到良好的解决方案。
然而,你可以做得比不断的学习率更好:如果你从一个高的学习率开始,然后一旦它停止快速的进步就减少它,你可以比最佳的恒定学习率更快地达到一个好的解决方案。 有许多不同的策略,以减少训练期间的学习率。 这些策略被称为学习率调整(我们在第 4 章中简要介绍了这个概念),其中最常见的是:
预定的分段恒定学习率:
例如,首先将学习率设置为 η0 = 0.1,然后在 50 个迭代之后将学习率设置为 η0 = 0.001。虽然这个解决方案可以很好地工作,但是通常需要弄清楚正确的学习速度以及何时使用它们。
性能调度:
每 N 步测量验证误差(就像提前停止一样),当误差下降时,将学习率降低一个因子λ
。
指数调度:
将学习率设置为迭代次数t
的函数:η(t) = η0 10–t/r。 这很好,但它需要调整η0和r
。 学习率将由每r
步下降 10 倍。
幂调度:
设学习率为 η(t) = η0 (1 t/r)–c。 超参数c
通常被设置为 1。这与指数调度类似,但是学习率下降要慢得多。
Andrew Senior 等人在2013年的论文比较了使用动量优化训练深度神经网络进行语音识别时一些最流行的学习率调整的性能。 作者得出结论:在这种情况下,性能调度和指数调度都表现良好,但他们更喜欢指数调度,因为它实现起来比较简单,容易调整,收敛速度略快于最佳解决方案。
使用 TensorFlow 实现学习率调整非常简单:
代码语言:javascript复制 initial_learning_rate = 0.1
decay_steps = 10000
decay_rate = 1/10
global_step = tf.Variable(0, trainable=False, name="global_step")
learning_rate = tf.train.exponential_decay(initial_learning_rate, global_step,
decay_steps, decay_rate)
optimizer = tf.train.MomentumOptimizer(learning_rate, momentum=0.9)
training_op = optimizer.minimize(loss, global_step=global_step)
设置超参数值后,我们创建一个不可训练的变量global_step
(初始化为 0)以跟踪当前的训练迭代次数。 然后我们使用 TensorFlow 的exponential_decay()
函数来定义指数衰减的学习率(η0= 0.1
和r = 10,000
)。 接下来,我们使用这个衰减的学习率创建一个优化器(在这个例子中是一个MomentumOptimizer
)。 最后,我们通过调用优化器的minimize()
方法来创建训练操作;因为我们将global_step
变量传递给它,所以请注意增加它。 就是这样!
由于 AdaGrad,RMSProp 和 Adam 优化自动降低了训练期间的学习率,因此不需要添加额外的学习率调整。 对于其他优化算法,使用指数衰减或性能调度可显著加速收敛。
完整代码:
代码语言:javascript复制n_inputs = 28 * 28 # MNIST
n_hidden1 = 300
n_hidden2 = 50
n_outputs = 10
X = tf.placeholder(tf.float32, shape=(None, n_inputs), name="X")
y = tf.placeholder(tf.int64, shape=(None), name="y")
with tf.name_scope("dnn"):
hidden1 = tf.layers.dense(X, n_hidden1, activation=tf.nn.relu, name="hidden1")
hidden2 = tf.layers.dense(hidden1, n_hidden2, activation=tf.nn.relu, name="hidden2")
logits = tf.layers.dense(hidden2, n_outputs, name="outputs")
with tf.name_scope("loss"):
xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=logits)
loss = tf.reduce_mean(xentropy, name="loss")
with tf.name_scope("eval"):
correct = tf.nn.in_top_k(logits, y, 1)
accuracy = tf.reduce_mean(tf.cast(correct, tf.float32), name="accuracy")
代码语言:javascript复制with tf.name_scope("train"): # not shown in the book
initial_learning_rate = 0.1
decay_steps = 10000
decay_rate = 1/10
global_step = tf.Variable(0, trainable=False, name="global_step")
learning_rate = tf.train.exponential_decay(initial_learning_rate, global_step,
decay_steps, decay_rate)
optimizer = tf.train.MomentumOptimizer(learning_rate, momentum=0.9)
training_op = optimizer.minimize(loss, global_step=global_step)
代码语言:javascript复制init = tf.global_variables_initializer()
saver = tf.train.Saver()
代码语言:javascript复制n_epochs = 5
batch_size = 50
with tf.Session() as sess:
init.run()
for epoch in range(n_epochs):
for iteration in range(mnist.train.num_examples // batch_size):
X_batch, y_batch = mnist.train.next_batch(batch_size)
sess.run(training_op, feed_dict={X: X_batch, y: y_batch})
accuracy_val = accuracy.eval(feed_dict={X: mnist.test.images,
y: mnist.test.labels})
print(epoch, "Test accuracy:", accuracy_val)
save_path = saver.save(sess, "./my_model_final.ckpt")
通过正则化避免过拟合
有四个参数,我可以拟合一个大象,五个我可以让他摆动他的象鼻。
—— John von Neumann,cited by Enrico Fermi in Nature 427
深度神经网络通常具有数以万计的参数,有时甚至是数百万。 有了这么多的参数,网络拥有难以置信的自由度,可以适应各种复杂的数据集。 但是这个很大的灵活性也意味着它很容易过拟合训练集。
有了数以百万计的参数,你可以适应整个动物园。 在本节中,我们将介绍一些最流行的神经网络正则化技术,以及如何用 TensorFlow 实现它们:早期停止,l1 和 l2 正则化,drop out,最大范数正则化和数据增强。
早期停止
为避免过度拟合训练集,一个很好的解决方案就是尽早停止训练(在第 4 章中介绍):只要在训练集的性能开始下降时中断训练。
与 TensorFlow 实现方法之一是评估其对设置定期(例如,每 50 步)验证模型,并保存一个“winner”的快照,如果它优于以前“winner”的快照。 计算自上次“winner”快照保存以来的步数,并在达到某个限制时(例如 2000 步)中断训练。 然后恢复最后的“winner”快照。
虽然早期停止在实践中运行良好,但是通过将其与其他正则化技术相结合,您通常可以在网络中获得更高的性能。
L1 和 L2 正则化
就像你在第 4 章中对简单线性模型所做的那样,你可以使用 l1 和 l2 正则化约束一个神经网络的连接权重(但通常不是它的偏置)。
使用 TensorFlow 做到这一点的一种方法是简单地将适当的正则化项添加到您的损失函数中。 例如,假设您只有一个权重为weights1
的隐藏层和一个权重为weight2
的输出层,那么您可以像这样应用 l1 正则化:
我们可以将正则化函数传递给tf.layers.dense()
函数,该函数将使用它来创建计算正则化损失的操作,并将这些操作添加到正则化损失集合中。 开始和上面一样:
n_inputs = 28 * 28 # MNIST
n_hidden1 = 300
n_hidden2 = 50
n_outputs = 10
X = tf.placeholder(tf.float32, shape=(None, n_inputs), name="X")
y = tf.placeholder(tf.int64, shape=(None), name="y")
接下来,我们将使用 Python partial()
函数来避免一遍又一遍地重复相同的参数。 请注意,我们设置了内核正则化参数(正则化函数有l1_regularizer()
,l2_regularizer()
,l1_l2_regularizer()
):
scale = 0.001
代码语言:javascript复制my_dense_layer = partial(
tf.layers.dense, activation=tf.nn.relu,
kernel_regularizer=tf.contrib.layers.l1_regularizer(scale))
with tf.name_scope("dnn"):
hidden1 = my_dense_layer(X, n_hidden1, name="hidden1")
hidden2 = my_dense_layer(hidden1, n_hidden2, name="hidden2")
logits = my_dense_layer(hidden2, n_outputs, activation=None,
name="outputs")
该代码创建了一个具有两个隐藏层和一个输出层的神经网络,并且还在图中创建节点以计算与每个层的权重相对应的 l1 正则化损失。TensorFlow 会自动将这些节点添加到包含所有正则化损失的特殊集合中。 您只需要将这些正则化损失添加到您的整体损失中,如下所示:
接下来,我们必须将正则化损失加到基本损失上:
代码语言:javascript复制with tf.name_scope("loss"): # not shown in the book
xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits( # not shown
labels=y, logits=logits) # not shown
base_loss = tf.reduce_mean(xentropy, name="avg_xentropy") # not shown
reg_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
loss = tf.add_n([base_loss] reg_losses, name="loss")
其余的和往常一样:
代码语言:javascript复制with tf.name_scope("eval"):
correct = tf.nn.in_top_k(logits, y, 1)
accuracy = tf.reduce_mean(tf.cast(correct, tf.float32), name="accuracy")
learning_rate = 0.01
with tf.name_scope("train"):
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
training_op = optimizer.minimize(loss)
init = tf.global_variables_initializer()
saver = tf.train.Saver()
代码语言:javascript复制n_epochs = 20
batch_size = 200
with tf.Session() as sess:
init.run()
for epoch in range(n_epochs):
for iteration in range(mnist.train.num_examples // batch_size):
X_batch, y_batch = mnist.train.next_batch(batch_size)
sess.run(training_op, feed_dict={X: X_batch, y: y_batch})
accuracy_val = accuracy.eval(feed_dict={X: mnist.test.images,
y: mnist.test.labels})
print(epoch, "Test accuracy:", accuracy_val)
save_path = saver.save(sess, "./my_model_final.ckpt")
不要忘记把正则化的损失加在你的整体损失上,否则就会被忽略。
Dropout
深度神经网络最流行的正则化技术可以说是 dropout。 它由 GE Hinton 于 2012 年提出,并在 Nitish Srivastava 等人的论文中进一步详细描述,并且已被证明是非常成功的:即使是最先进的神经网络,仅仅通过增加丢失就可以提高1-2%的准确度。 这听起来可能不是很多,但是当一个模型已经具有 95% 的准确率时,获得 2% 的准确度提升意味着将误差率降低近 40%(从 5% 误差降至大约 3%)。
这是一个相当简单的算法:在每个训练步骤中,每个神经元(包括输入神经元,但不包括输出神经元)都有一个暂时“丢弃”的概率p
,这意味着在这个训练步骤中它将被完全忽略, 在下一步可能会激活(见图 11-9)。 超参数p
称为丢失率,通常设为 50%。 训练后,神经元不会再下降。 这就是全部(除了我们将要讨论的技术细节)。
图11-9 丢失正则化
一开始这个技术是相当粗鲁,这是相当令人惊讶的。如果一个公司的员工每天早上被告知要掷硬币来决定是否上班,公司的表现会不会更好呢?那么,谁知道;也许会!公司显然将被迫适应这样的组织构架;它不能依靠任何一个人填写咖啡机或执行任何其他关键任务,所以这个专业知识将不得不分散在几个人身上。员工必须学会与其他的许多同事合作,而不仅仅是其中的一小部分。该公司将变得更有弹性。如果一个人离开了,并没有什么区别。目前还不清楚这个想法是否真的可以在公司实行,但它确实对于神经网络是可以的。神经元被dropout训练不能与其相邻的神经元共适应;他们必须尽可能让自己变得有用。他们也不能过分依赖一些输入神经元;他们必须注意他们的每个输入神经元。他们最终对输入的微小变化会不太敏感。最后,你会得到一个更强大的网络,更好地推广。
了解 dropout 的另一种方法是认识到每个训练步骤都会产生一个独特的神经网络。 由于每个神经元可以存在或不存在,总共有2 ^ N
个可能的网络(其中 N 是可丢弃神经元的总数)。 这是一个巨大的数字,实际上不可能对同一个神经网络进行两次采样。 一旦你运行了 10,000 个训练步骤,你基本上已经训练了 10,000 个不同的神经网络(每个神经网络只有一个训练实例)。 这些神经网络显然不是独立的,因为它们共享许多权重,但是它们都是不同的。 由此产生的神经网络可以看作是所有这些较小的神经网络的平均集成。
有一个小而重要的技术细节。 假设p = 50%
,在这种情况下,在测试期间,在训练期间神经元将被连接到两倍于(平均)的输入神经元。 为了弥补这个事实,我们需要在训练之后将每个神经元的输入连接权重乘以 0.5。 如果我们不这样做,每个神经元的总输入信号大概是网络训练的两倍,这不太可能表现良好。 更一般地说,我们需要将每个输入连接权重乘以训练后的保持概率(1-p
)。 或者,我们可以在训练过程中将每个神经元的输出除以保持概率(这些替代方案并不完全等价,但它们工作得同样好)。
要使用 TensorFlow 实现dropout,可以简单地将dropout()
函数应用于输入层和每个隐藏层的输出。 在训练过程中,这个功能随机丢弃一些节点(将它们设置为 0),并用保留概率来划分剩余项目。 训练结束后,这个函数什么都不做。下面的代码将dropout正则化应用于我们的三层神经网络:
注意:本书使用tf.contrib.layers.dropout()
而不是tf.layers.dropout()
(本章写作时不存在)。 现在最好使用tf.layers.dropout()
,因为contrib
模块中的任何内容都可能会改变或被删除,恕不另行通知。tf.layers.dropout()
函数几乎与tf.contrib.layers.dropout()
函数相同,只是有一些细微差别。 最重要的是:
- 您必须指定丢失率(率)而不是保持概率(
keep_prob
),其中rate
简单地等于1 - keep_prob
-
is_training
参数被重命名为training
。
X = tf.placeholder(tf.float32, shape=(None, n_inputs), name="X")
y = tf.placeholder(tf.int64, shape=(None), name="y")
代码语言:javascript复制training = tf.placeholder_with_default(False, shape=(), name='training')
dropout_rate = 0.5 # == 1 - keep_prob
X_drop = tf.layers.dropout(X, dropout_rate, training=training)
with tf.name_scope("dnn"):
hidden1 = tf.layers.dense(X_drop, n_hidden1, activation=tf.nn.relu,
name="hidden1")
hidden1_drop = tf.layers.dropout(hidden1, dropout_rate, training=training)
hidden2 = tf.layers.dense(hidden1_drop, n_hidden2, activation=tf.nn.relu,
name="hidden2")
hidden2_drop = tf.layers.dropout(hidden2, dropout_rate, training=training)
logits = tf.layers.dense(hidden2_drop, n_outputs, name="outputs")
代码语言:javascript复制with tf.name_scope("loss"):
xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=logits)
loss = tf.reduce_mean(xentropy, name="loss")
with tf.name_scope("train"):
optimizer = tf.train.MomentumOptimizer(learning_rate, momentum=0.9)
training_op = optimizer.minimize(loss)
with tf.name_scope("eval"):
correct = tf.nn.in_top_k(logits, y, 1)
accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))
init = tf.global_variables_initializer()
saver = tf.train.Saver()
代码语言:javascript复制n_epochs = 20
batch_size = 50
with tf.Session() as sess:
init.run()
for epoch in range(n_epochs):
for iteration in range(mnist.train.num_examples // batch_size):
X_batch, y_batch = mnist.train.next_batch(batch_size)
sess.run(training_op, feed_dict={training: True, X: X_batch, y: y_batch})
acc_test = accuracy.eval(feed_dict={X: mnist.test.images, y: mnist.test.labels})
print(epoch, "Test accuracy:", acc_test)
save_path = saver.save(sess, "./my_model_final.ckpt")
你想在tensorflow.contrib.layers
中使用dropout()
函数,而不是tensorflow.nn
中的那个。 第一个在不训练的时候关掉(没有操作),这是你想要的,而第二个不是。
如果观察到模型过拟合,则可以增加 dropout 率(即,减少keep_prob
超参数)。 相反,如果模型欠拟合训练集,则应尝试降低 dropout 率(即增加keep_prob
)。 它也可以帮助增加大层的 dropout 率,并减少小层的 dropout 率。
dropout 似乎减缓了收敛速度,但通常会在调整得当时使模型更好。 所以,这通常值得花费额外的时间和精力。
Dropconnect是dropout的变体,其中单个连接随机丢弃而不是整个神经元。 一般而言,dropout表现会更好。
最大范数正则化
另一种在神经网络中非常流行的正则化技术被称为最大范数正则化:对于每个神经元,它约束输入连接的权重w
,使得 w ∥2 ≤ r,其中r
是最大范数超参数,∥ · ∥2 是 l2 范数。
我们通常通过在每个训练步骤之后计算∥w∥2 来实现这个约束,并且如果需要的话可以剪切W
。
减少r
增加了正则化的数量,并有助于减少过拟合。 最大范数正则化还可以帮助减轻梯度消失/爆炸问题(如果您不使用批量标准化)。
让我们回到 MNIST 的简单而简单的神经网络,只有两个隐藏层:
代码语言:javascript复制n_inputs = 28 * 28
n_hidden1 = 300
n_hidden2 = 50
n_outputs = 10
learning_rate = 0.01
momentum = 0.9
X = tf.placeholder(tf.float32, shape=(None, n_inputs), name="X")
y = tf.placeholder(tf.int64, shape=(None), name="y")
with tf.name_scope("dnn"):
hidden1 = tf.layers.dense(X, n_hidden1, activation=tf.nn.relu, name="hidden1")
hidden2 = tf.layers.dense(hidden1, n_hidden2, activation=tf.nn.relu, name="hidden2")
logits = tf.layers.dense(hidden2, n_outputs, name="outputs")
with tf.name_scope("loss"):
xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=logits)
loss = tf.reduce_mean(xentropy, name="loss")
with tf.name_scope("train"):
optimizer = tf.train.MomentumOptimizer(learning_rate, momentum)
training_op = optimizer.minimize(loss)
with tf.name_scope("eval"):
correct = tf.nn.in_top_k(logits, y, 1)
accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))
接下来,让我们来处理第一个隐藏层的权重,并创建一个操作,使用clip_by_norm()
函数计算剪切后的权重。 然后我们创建一个赋值操作来将权值赋给权值变量:
threshold = 1.0
weights = tf.get_default_graph().get_tensor_by_name("hidden1/kernel:0")
clipped_weights = tf.clip_by_norm(weights, clip_norm=threshold, axes=1)
clip_weights = tf.assign(weights, clipped_weights)
我们也可以为第二个隐藏层做到这一点:
代码语言:javascript复制weights2 = tf.get_default_graph().get_tensor_by_name("hidden2/kernel:0")
clipped_weights2 = tf.clip_by_norm(weights2, clip_norm=threshold, axes=1)
clip_weights2 = tf.assign(weights2, clipped_weights2)
让我们添加一个初始化器和一个保存器:
代码语言:javascript复制init = tf.global_variables_initializer()
saver = tf.train.Saver()
现在我们可以训练模型。 与往常一样,除了在运行training_op
之后,我们运行clip_weights
和clip_weights2
操作:
n_epochs = 20
batch_size = 50
代码语言:javascript复制with tf.Session() as sess: # not shown in the book
init.run() # not shown
for epoch in range(n_epochs): # not shown
for iteration in range(mnist.train.num_examples // batch_size): # not shown
X_batch, y_batch = mnist.train.next_batch(batch_size) # not shown
sess.run(training_op, feed_dict={X: X_batch, y: y_batch})
clip_weights.eval()
clip_weights2.eval() # not shown
acc_test = accuracy.eval(feed_dict={X: mnist.test.images, # not shown
y: mnist.test.labels}) # not shown
print(epoch, "Test accuracy:", acc_test) # not shown
save_path = saver.save(sess, "./my_model_final.ckpt") # not shown
上面的实现很简单,工作正常,但有点麻烦。 更好的方法是定义一个max_norm_regularizer()
函数:
def max_norm_regularizer(threshold, axes=1, name="max_norm",
collection="max_norm"):
def max_norm(weights):
clipped = tf.clip_by_norm(weights, clip_norm=threshold, axes=axes)
clip_weights = tf.assign(weights, clipped, name=name)
tf.add_to_collection(collection, clip_weights)
return None # there is no regularization loss term
return max_norm
然后你可以调用这个函数来得到一个最大范数调节器(与你想要的阈值)。 当你创建一个隐藏层时,你可以将这个正则化器传递给kernel_regularizer
参数:
n_inputs = 28 * 28
n_hidden1 = 300
n_hidden2 = 50
n_outputs = 10
learning_rate = 0.01
momentum = 0.9
X = tf.placeholder(tf.float32, shape=(None, n_inputs), name="X")
y = tf.placeholder(tf.int64, shape=(None), name="y")
代码语言:javascript复制max_norm_reg = max_norm_regularizer(threshold=1.0)
with tf.name_scope("dnn"):
hidden1 = tf.layers.dense(X, n_hidden1, activation=tf.nn.relu,
kernel_regularizer=max_norm_reg, name="hidden1")
hidden2 = tf.layers.dense(hidden1, n_hidden2, activation=tf.nn.relu,
kernel_regularizer=max_norm_reg, name="hidden2")
logits = tf.layers.dense(hidden2, n_outputs, name="outputs")
代码语言:javascript复制with tf.name_scope("loss"):
xentropy = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=y, logits=logits)
loss = tf.reduce_mean(xentropy, name="loss")
with tf.name_scope("train"):
optimizer = tf.train.MomentumOptimizer(learning_rate, momentum)
training_op = optimizer.minimize(loss)
with tf.name_scope("eval"):
correct = tf.nn.in_top_k(logits, y, 1)
accuracy = tf.reduce_mean(tf.cast(correct, tf.float32))
init = tf.global_variables_initializer()
saver = tf.train.Saver()
训练与往常一样,除了每次训练后必须运行重量裁剪操作:
请注意,最大范数正则化不需要在整体损失函数中添加正则化损失项,所以max_norm()
函数返回None
。 但是,在每个训练步骤之后,仍需要运行clip_weights
操作,因此您需要能够掌握它。 这就是为什么max_norm()
函数将clip_weights
节点添加到最大范数剪裁操作的集合中的原因。您需要获取这些裁剪操作并在每个训练步骤后运行它们:
n_epochs = 20
batch_size = 50
代码语言:javascript复制clip_all_weights = tf.get_collection("max_norm")
with tf.Session() as sess:
init.run()
for epoch in range(n_epochs):
for iteration in range(mnist.train.num_examples // batch_size):
X_batch, y_batch = mnist.train.next_batch(batch_size)
sess.run(training_op, feed_dict={X: X_batch, y: y_batch})
sess.run(clip_all_weights)
acc_test = accuracy.eval(feed_dict={X: mnist.test.images, # not shown in the book
y: mnist.test.labels}) # not shown
print(epoch, "Test accuracy:", acc_test) # not shown
save_path = saver.save(sess, "./my_model_final.ckpt") # not shown
数据增强
最后一个正则化技术,数据增强,包括从现有的训练实例中产生新的训练实例,人为地增加了训练集的大小。 这将减少过拟合,使之成为正则化技术。 诀窍是生成逼真的训练实例; 理想情况下,一个人不应该能够分辨出哪些是生成的,哪些不是生成的。 而且,简单地加白噪声也无济于事。 你应用的修改应该是可以学习的(白噪声不是)。
例如,如果您的模型是为了分类蘑菇图片,您可以稍微移动,旋转和调整训练集中的每个图片的大小,并将结果图片添加到训练集(见图 11-10)。 这迫使模型更能容忍图片中蘑菇的位置,方向和大小。 如果您希望模型对光照条件更加宽容,则可以类似地生成具有各种对比度的许多图像。 假设蘑菇是对称的,你也可以水平翻转图片。 通过结合这些转换,可以大大增加训练集的大小。
图11-10 利用现有实例生成新的训练实例
通常最好在训练期间生成训练实例,而不是浪费存储空间和网络带宽。TensorFlow 提供了多种图像处理操作,例如转置(移位),旋转,调整大小,翻转和裁剪,以及调整亮度,对比度,饱和度和色调(请参阅 API 文档以获取更多详细信息)。 这可以很容易地为图像数据集实现数据增强。
训练非常深的神经网络的另一个强大的技术是添加跳过连接(跳过连接是将层的输入添加到更高层的输出时)。 我们将在第 13 章中谈论深度残差网络时探讨这个想法。
实践指南
在本章中,我们讲解了很多技术,你可能想知道应该使用哪些技术。 表 11-2 中的配置在大多数情况下都能正常工作。
表11-2 默认的DNN配置
当然,如果你能找到解决类似问题的方法,你应该尝试重用预训练的神经网络的一部分。
这个默认配置可能需要调整:
- 如果你找不到一个好的学习率(收敛速度太慢,所以你增加了训练速度,现在收敛速度很快,但是网络的准确性不是最理想的),那么你可以尝试添加一个学习率调整,如指数衰减。
- 如果你的训练集太小,你可以实现数据增强。
- 如果你需要一个稀疏的模型,你可以添加 l1 正则化混合(并可以选择在训练后将微小的权重归零)。 如果您需要更稀疏的模型,您可以尝试使用 FTRL 而不是 Adam 优化以及 l1 正则化。
- 如果在运行时需要快速模型,则可能需要删除批量标准化,并可能用 leakyReLU 替换 ELU 激活函数。 有一个稀疏的模型也将有所帮助。
有了这些指导方针,你现在已经准备好训练非常深的网络 - 好吧,如果你非常有耐心的话,那就是! 如果使用单台机器,则可能需要等待几天甚至几个月才能完成训练。 在下一章中,我们将讨论如何使用分布式 TensorFlow 在许多服务器和 GPU 上训练和运行模型。
练习
- 使用 He 初始化随机选择权重,是否可以将所有权重初始化为相同的值?
- 可以将偏置初始化为 0 吗?
- 说出 ELU 激活功能与 ReLU 相比的三个优点。
- 在哪些情况下,您想要使用以下每个激活函数:ELU,leaky ReLU(及其变体),ReLU,tanh,logistic 以及 softmax?
- 使用
MomentumOptimizer
时,如果将momentum
超参数设置得太接近 1(例如,0.99999),会发生什么情况? - 请列举您可以生成稀疏模型的三种方法。
- dropout 是否会减慢训练? 它是否会减慢推断(即预测新的实例)?
- 深度学习。
- 建立一个 DNN,有五个隐藏层,每层 100 个神经元,使用 He 初始化和 ELU 激活函数。
- 使用 Adam 优化和提前停止,请尝试在 MNIST 上进行训练,但只能使用数字 0 到 4,因为我们将在下一个练习中在数字 5 到 9 上进行迁移学习。 您需要一个包含五个神经元的 softmax 输出层,并且一如既往地确保定期保存检查点,并保存最终模型,以便稍后再使用它。
- 使用交叉验证调整超参数,并查看你能达到什么准确度。
- 现在尝试添加批量标准化并比较学习曲线:它是否比以前收敛得更快? 它是否会产生更好的模型?
- 模型是否过拟合训练集? 尝试将 dropout 添加到每一层,然后重试。 它有帮助吗?
- 迁移学习。
- 创建一个新的 DNN,它复制先前模型的所有预训练的隐藏层,冻结它们,并用新的一层替换 softmax 输出层。
- 在数字 5 到 9 训练这个新的 DNN ,每个数字只使用 100 个图像,需要多长时间? 尽管样本这么少,你能达到高准确度吗?
- 尝试缓存冻结的层,并再次训练模型:现在速度有多快?
- 再次尝试复用四个隐藏层而不是五个。 你能达到更高的准确度吗?
- 现在,解冻前两个隐藏层并继续训练:您可以让模型表现得更好吗?
- 辅助任务的预训练。
- 在本练习中,你将构建一个 DNN,用于比较两个 MNIST 数字图像,并预测它们是否代表相同的数字。 然后,你将复用该网络的较低层,来使用非常少的训练数据来训练 MNIST 分类器。 首先构建两个 DNN(我们称之为 DNN A 和 B),它们与之前构建的 DNN 类似,但没有输出层:每个 DNN 应该有五个隐藏层,每个层包含 100 个神经元,使用 He 初始化和 ELU 激活函数。 接下来,在两个 DNN 上添加一个输出层。 你应该使用 TensorFlow 的
concat()函数和
axis = 1`,将两个 DNN 的输出沿着横轴连接,然后将结果输入到输出层。 输出层应该包含单个神经元,使用 logistic 激活函数。 - 将 MNIST 训练集分为两组:第一部分应包含 55,000个 图像,第二部分应包含 5000 个图像。 创建一个生成训练批次的函数,其中每个实例都是从第一部分中挑选的一对 MNIST 图像。 一半的训练实例应该是属于同一类的图像对,而另一半应该是来自不同类别的图像。 对于每一对,如果图像来自同一类,训练标签应该为 0;如果来自不同类,则标签应为 1。
- 在这个训练集上训练 DNN。 对于每个图像对,你可以同时将第一张图像送入 DNN A,将第二张图像送入 DNN B。整个网络将逐渐学会判断两张图像是否属于同一类别。
- 现在通过复用和冻结 DNN A 的隐藏层,并添加 1 0个神经元的 softmax 输出层来创建一个新的 DNN。 在第二部分上训练这个网络,看看你是否可以实现较好的表现,尽管每类只有 500 个图像。
- 在本练习中,你将构建一个 DNN,用于比较两个 MNIST 数字图像,并预测它们是否代表相同的数字。 然后,你将复用该网络的较低层,来使用非常少的训练数据来训练 MNIST 分类器。 首先构建两个 DNN(我们称之为 DNN A 和 B),它们与之前构建的 DNN 类似,但没有输出层:每个 DNN 应该有五个隐藏层,每个层包含 100 个神经元,使用 He 初始化和 ELU 激活函数。 接下来,在两个 DNN 上添加一个输出层。 你应该使用 TensorFlow 的
这些问题的答案在附录 A 中。