R语言入门 Chapter02 | 矩阵与数组

2020-10-28 14:48:31 浏览数 (1)

不登高山,不知天之高也;不临深溪,不知地之厚也。 ——荀子

这篇文章讲述的是R语言中关于矩阵与数组的相关知识。希望这篇R语言文章对您有所帮助!如果您有想学习的知识或建议,可以给作者留言~

矩阵是一个按照长方阵列排列的复合或实数集合。向量是一维的,而矩阵是二维的,需要有行和列。 在R软件中,矩阵是有维数的向量,这里的矩阵元素可以是数值型,字符型或者逻辑型,但是每个元素必须都拥有相同的模式,这个和向量是一致的。

R语言中比较出名的矩阵

代码语言:javascript复制
iris3
state.x77    # 美国五十个州八个指标
  • 使用heatmap()函数可以直接绘制热图

矩阵其实就是给向量加一个维度

1、创建矩阵

代码语言:javascript复制
> x <- 1:20
> x
 [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20

# 定义一个对象m, 用来存储矩阵,第二个参数指定行数,第三个参数用来指定列数,可以省略,直接写4,5
> m <- matrix(x,nrow = 4,ncol = 5)
> m
     [,1] [,2] [,3] [,4] [,5]
[1,]    1    5    9   13   17
[2,]    2    6   10   14   18
[3,]    3    7   11   15   19
[4,]    4    8   12   16   20

# 此为上述代码的简写
> m <- matrix(x,4,5)
> m
     [,1] [,2] [,3] [,4] [,5]
[1,]    1    5    9   13   17
[2,]    2    6   10   14   18
[3,]    3    7   11   15   19
[4,]    4    8   12   16   20

#  行和列必须要满足条件    4行6列会报错,超过了限制
> m <- matrix(x,nrow = 4,ncol = 6)
Warning message:
In matrix(x, nrow = 4, ncol = 6) :
  data length [20] is not a sub-multiple or multiple of the number of columns [6]

# 
> matrix(x,4,4) 
     [,1] [,2] [,3] [,4]
[1,]    1    5    9   13
[2,]    2    6   10   14
[3,]    3    7   11   15
[4,]    4    8   12   16


# 行和列要有一个满足条件,否则会报错  报错原因,因为20不是3的整数倍
> matrix(x,3,3)    
     [,1] [,2] [,3]
[1,]    1    4    7
[2,]    2    5    8
[3,]    3    6    9
Warning message:
In matrix(x, 3, 3) :
  data length [20] is not a sub-multiple or multiple of the number of rows [3]


# 只给一个行或者列会自动分配,矩阵是按照列进行分配的
> matrix(x,4) 
     [,1] [,2] [,3] [,4] [,5]
[1,]    1    5    9   13   17
[2,]    2    6   10   14   18
[3,]    3    7   11   15   19
[4,]    4    8   12   16   20

#  byrow=TURE按行排列,否则按列排列
> m <- matrix(x,nrow = 4,ncol = 5,byrow = TRUE)
> m
     [,1] [,2] [,3] [,4] [,5]
[1,]    1    2    3    4    5
[2,]    6    7    8    9   10
[3,]   11   12   13   14   15
[4,]   16   17   18   19   20

# 修改行和列的名称
> rnames <- c("R1","R2","R3","R4")
> cnames <- c("C1","C2","C3","C4","C5")
> dimnames(m)=list (rnames,cnames)
> m
   C1 C2 C3 C4 C5
R1  1  2  3  4  5
R2  6  7  8  9 10
R3 11 12 13 14 15
R4 16 17 18 19 20

#  dim()函数可以显示向量的维数
> dim(x)
NULL
# 为向量添加函数构建矩阵
> dim(x) <- c(4,5)
> x
     [,1] [,2] [,3] [,4] [,5]
[1,]    1    5    9   13   17
[2,]    2    6   10   14   18
[3,]    3    7   11   15   19
[4,]    4    8   12   16   20

2、创建数组

代码语言:javascript复制
# 三维数组,可以理解为一个长宽高分别为2,2,5的矩阵
> dim(x) <- c(2,2,5)
> x
, , 1

     [,1] [,2]
[1,]    1    3
[2,]    2    4

, , 2

     [,1] [,2]
[1,]    5    7
[2,]    6    8

, , 3

     [,1] [,2]
[1,]    9   11
[2,]   10   12

, , 4

     [,1] [,2]
[1,]   13   15
[2,]   14   16

, , 5

     [,1] [,2]
[1,]   17   19
[2,]   18   20

# Creating an array
> x <- 1:20
> dim(x) <- c(2,2,5)
> dim1 <- c("A1", "A2")           # 行
> dim2 <- c("B1", "B2", "B3")     # 列
> dim3 <- c("C1", "C2", "C3", "C4") # 给几个值就为几维数组

# dimnames用来定义每个维度的标签
> z <- array(1:24, c(2,3,4), dimnames=list(dim1, dim2, dim3))
> z
, , C1

   B1 B2 B3
A1  1  3  5
A2  2  4  6

, , C2

   B1 B2 B3
A1  7  9 11
A2  8 10 12

, , C3

   B1 B2 B3
A1 13 15 17
A2 14 16 18

, , C4

   B1 B2 B3
A1 19 21 23
A2 20 22 24

3、通过索引访问矩阵

代码语言:javascript复制
# 4x5的矩阵m
> m <- matrix(x,nrow = 4,ncol = 5)
> m
     [,1] [,2] [,3] [,4] [,5]
[1,]    1    5    9   13   17
[2,]    2    6   10   14   18
[3,]    3    7   11   15   19
[4,]    4    8   12   16   20

# 访问第一行第二列的元素
> m[1,2]
[1] 5

# 访问第一行二,三,四列的元素
> m[1,c(2,3,4)]
[1]  5  9 13

# 访问矩阵一个子集
> m[c(2,4),c(2,3)]
     [,1] [,2]
[1,]    6   10
[2,]    8   12

# 访问第二行
> m[2,]
[1]  2  6 10 14 18

# 访问第二列
> m[,2]
[1] 5 6 7 8

# 访问对应的行
> m[2] 
[1] 2

# 去除第一行再取第二列
> m[-1,2]
[1] 6 7 8

4、通过名称访问矩阵

代码语言:javascript复制
> dimnames(m)=list (rnames,cnames) 
> m
   C1 C2 C3 C4 C5
R1  1  5  9 13 17
R2  2  6 10 14 18
R3  3  7 11 15 19
R4  4  8 12 16 20

# 此行出错
> m["C1","C2"]
Error in m["C1", "C2"] : subscript out of bounds

# 通过行名列名访问元素
> m["R1","C2"]
[1] 5

# 出错部分
> m["R1"]
[1] NA
> m["C1"]
[1] NA
> m[,"R1"]
Error in m[, "R1"] : subscript out of bounds

# 想要访问列的名字,访问列
> m["R1",]
C1 C2 C3 C4 C5 
 1  5  9 13 17 

# 想要访问行的名字 ,访问行
> m[,"C1"]
R1 R2 R3 R4 
 1  2  3  4 

5、矩阵的运算

此部分为矩阵的一些写法以及计算技巧

  • 1、t()函数

实现矩阵的转置,行变列,列变行

代码语言:javascript复制
> a <- matrix(1:12,nrow = 3,ncol = 4)
> a
     [,1] [,2] [,3] [,4]
[1,]    1    4    7   10
[2,]    2    5    8   11
[3,]    3    6    9   12

#  行列互换
> t(a)
     [,1] [,2] [,3]
[1,]    1    2    3
[2,]    4    5    6
[3,]    7    8    9
[4,]   10   11   12
  • 2、矩阵加减
代码语言:javascript复制
> a <- b <- matrix(1:12,nrow = 3,ncol = 4)
> a b
     [,1] [,2] [,3] [,4]
[1,]    2    8   14   20
[2,]    4   10   16   22
[3,]    6   12   18   24
> a-b
     [,1] [,2] [,3] [,4]
[1,]    0    0    0    0
[2,]    0    0    0    0
[3,]    0    0    0    0
  • 3、矩阵相乘
代码语言:javascript复制
> a <- matrix(1:12,nrow = 3,ncol = 4)
> b <- matrix(1:12,nrow = 4,ncol = 3)
> a%*%b            线代矩阵相乘
     [,1] [,2] [,3]
[1,]   70  158  246
[2,]   80  184  288
[3,]   90  210  330
  • 4、diag()函数

求对角线,diag()函数

代码语言:javascript复制
> a <- matrix(1:16,nrow = 4,ncol = 4)
> a
     [,1] [,2] [,3] [,4]
[1,]    1    5    9   13
[2,]    2    6   10   14
[3,]    3    7   11   15
[4,]    4    8   12   16

# 返回对角线
> diag(a)
[1]  1  6 11 16

# 对角线矩阵
> diag(diag(a))
     [,1] [,2] [,3] [,4]
[1,]    1    0    0    0
[2,]    0    6    0    0
[3,]    0    0   11    0
[4,]    0    0    0   16

# 产生一个四阶的单位矩阵
> diag(4)
     [,1] [,2] [,3] [,4]
[1,]    1    0    0    0
[2,]    0    1    0    0
[3,]    0    0    1    0
[4,]    0    0    0    1
  • 5、矩阵求逆,逆矩阵

solve()函数

代码语言:javascript复制
# 先使用rnorm函数随机生成16个随机数,并创建矩阵
> a <- matrix(rnorm(16),4,4)
> a
            [,1]        [,2]       [,3]       [,4]
[1,]  0.19496384 -1.32876618  0.8009854  0.1090159
[2,]  0.83996855 -1.31302374  0.4815483 -0.2333306
[3,] -1.71094415  0.03186264 -0.5280415  2.3790375
[4,] -0.03161188  0.85040187  0.4736652 -0.5227957

# solve()函数可以直接求逆
> solve(a)
           [,1]      [,2]      [,3]     [,4]
[1,] -2.3313965 3.2960835 0.7418279 1.418528
[2,] -1.1575768 1.2092526 0.4392610 1.217815
[3,]  0.1181362 0.8574405 0.4068229 1.493238
[4,] -1.6349574 2.5445791 1.0382558 1.335292
  • 6、解线性方程组

solve()函数还能解线性方程

代码语言:javascript复制
eg: ax=b
> a <- matrix(rnorm(16),4,4)
> a
           [,1]       [,2]       [,3]        [,4]
[1,]  1.2319870 -0.1801956  0.1470676  0.01413551
[2,] -0.2092927  0.2776381  1.0411766  0.44004831
[3,]  1.3762975 -0.6371769 -1.3026650 -1.20290275
[4,]  0.1149844  0.4075077  0.1193776 -0.21052398
> b <- c(1:4)
> b
[1] 1 2 3 4
> solve(a,b)
[1]  0.894783  3.750849  4.723690 -8.572473
  • 7、eigen()函数

用来求矩阵的特征值与特征向量

代码语言:javascript复制
> a <- diag(4) 1
> a
     [,1] [,2] [,3] [,4]
[1,]    2    1    1    1
[2,]    1    2    1    1
[3,]    1    1    2    1
[4,]    1    1    1    2
> a.e = eigen(a,symmetric = T)
> a.e
eigen() decomposition
$values
[1] 5 1 1 1

$vectors
     [,1]       [,2]       [,3]       [,4]
[1,] -0.5  0.8660254  0.0000000  0.0000000
[2,] -0.5 -0.2886751 -0.5773503 -0.5773503
[3,] -0.5 -0.2886751 -0.2113249  0.7886751
[4,] -0.5 -0.2886751  0.7886751 -0.2113249

6、添加

代码语言:javascript复制
colSums(m)            # 求矩阵每一列的和
rowSums(m)            # 求矩阵每一行的和
colMeans(m)           # 求矩阵每一列的平均值
rowMeans(m)           # 求矩阵每一行的平均值


n <- matrix (1:9,3,3)  # 3行3列的矩阵
t <- matrix (2:10,3,3) # 3行3列的矩阵
n*t                    # 矩阵的内积
n%*%t                  # 矩阵的外积

0 人点赞