不登高山,不知天之高也;不临深溪,不知地之厚也。 ——荀子
这篇文章讲述的是R语言中关于向量与矩阵的相关知识。希望这篇R语言文章对您有所帮助!如果您有想学习的知识或建议,可以给作者留言~
一、创建向量和矩阵
- 1、创建向量:c(),查看长度length(),查看类型mode()
代码语言:javascript复制1、创建向量
# 创建向量
x1 <- c(2,4,6,8,0)
x2 <- c(1,3,5,7,9)
# 创建字符串向量
> y <- c("li","hua","xin")
> y
[1] "li" "hua" "xin"
# 创建从1到100的向量
a1 <- c(1:100)
# 查看向量x1的内容
> x1
[1] 2 4 6 8 0
# 查看向量x1中的第三个数
> x1[3]
[1] 6
代码语言:javascript复制2、查看向量的长度和类型
# 查看字符串向量
> mode(y)
[1] "character"
# 查看向量的长度
> length(x1)
[1] 5
# 查看向量的类型
> mode(x1)
[1] "numeric"
- 2、创建矩阵:rbind(),cbind()
代码语言:javascript复制1、rbind() # 按行组合矩阵
> rbind(x1,x2)
[,1] [,2] [,3] [,4] [,5]
x1 2 4 6 8 0
x2 1 3 5 7 9
代码语言:javascript复制2、cbind() # 按列组合矩阵
> cbind(x1,x2)
x1 x2
[1,] 2 1
[2,] 4 3
[3,] 6 5
[4,] 8 7
[5,] 0 9
二、求平均值,和,连乘,最值,方差,标准差
- 函数:mean(),sum(),min(),max(),var(),sd(),prod()
代码语言:javascript复制创建了向量之后就可以进行求值了
> x <- c(1:100)
# 平均数
> mean(x)
[1] 50.5
# 求和
> sum(x)
[1] 5050
# 最大值
> max(x)
[1] 100
# 最小值
> min(x)
[1] 1
# 求方差 反应了数据离散的情况,方差越大离散越大
> var(x)
[1] 841.6667
# 连乘
> prod(x)
[1] 9.332622e 157
# 标准差
> sd(x)
[1] 29.01149
三、向量部分
此部分为向量的一些写法以及计算技巧
- 1
# 创建一个1到10的向量
> 1:10
[1] 1 2 3 4 5 6 7 8 9 10
# 向量中每一个数都减1
> 1:10-1
[1] 0 1 2 3 4 5 6 7 8 9
# 向量中每一个数都乘以2
> 1:10*2
[1] 2 4 6 8 10 12 14 16 18 20
# 向量中每一个数都乘以2加1
> 1:10*2 1
[1] 3 5 7 9 11 13 15 17 19 21
> a <- 1:60*2 1
> a
[1] 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45
[23] 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89
[45] 91 93 95 97 99 101 103 105 107 109 111 113 115 117 119 121
# a向量中下标为5的数的值
> a[5]
[1] 11
> a[5]
[1] 13
> a <- 2:60*2 1
> # a向量中下标除了5以外的所有元素
> a[-5]
[1] 5 7 9 11 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
[23] 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93
[45] 95 97 99 101 103 105 107 109 111 113 115 117 119 121
# 向量a中前五个元素
> a[1:5]
[1] 5 7 9 11 13
# 向量a中除了前五个下标以外对应的数
> a[-(1:5)]
[1] 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57
[23] 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 101
[45] 103 105 107 109 111 113 115 117 119 121
# 错误,度量值不对
> a[1,2,3]
Error in a[1, 2, 3] : incorrect number of dimensions
# 向量a中的第2,4,7个元素
> a[c(2,4,7)]
[1] 7 11 17
# 向量a中第三个到第八个元素的内容
> a[3:8]
[1] 9 11 13 15 17 19
# 向量a中小于20的元素
> a[a<20]
[1] 5 7 9 11 13 15 17 19
# 向量a中中大于30小于50的元素
> a[a>30 & a<50]
[1] 31 33 35 37 39 41 43 45 47 49
# 向量a中前三个元素相加
> a[a[3]]
[1] 21
- 2、Seq()函数
代码语言:javascript复制Seq()函数可以按照指定的规律创建向量
# 创建一个从5到20的向量
> seq(5,20)
[1] 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# 创建一个从5到121的向量,公差为2
> seq(5,121,by=2)
[1] 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47
[23] 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91
[45] 93 95 97 99 101 103 105 107 109 111 113 115 117 119 121
# by 和 length 不能同时指定
> seq(5,121,by=2,length=10)
Error in seq.default(5, 121, by = 2, length = 10) : 太多参数
# 创建一个从5到121的向量,总共有10项,自动计算公差
> seq(5,121,length=10)
[1] 5.00000 17.88889 30.77778 43.66667 56.55556 69.44444 82.33333 95.22222 108.11111
[10] 121.00000
- 3、产生字母序列letters
# 生成字母序列,超过部分 NA自动补齐
> letters[1:30]
[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s" "t" "u" "v"
[23] "w" "x" "y" "z" NA NA NA NA
- 4、which()函数
> a <- c(2,3,4,2,5,1,6,3,2,5,8,5,7,3)
# 向量中最大值的下标
> which.max(a)
[1] 11
# 向量中最小值的下标
> which.min(a)
[1] 6
# 最小下标的值
> a[which.min(a)]
[1] 1
# 向量中值为2的下标
> which(a==2)
[1] 1 4 9
# 向量中为2的元素
> a[which(a==2)]
[1] 2 2 2
# 向量中值大于5的下标
> which(a>5)
[1] 7 11 13
# 向量中大于5的元素
> a[which(a>5)]
[1] 6 8 7
- 5、rev()函数,sort()函数
> a <- 1:20
> a
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# 倒序向量
> rev(a)
[1] 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
# 随机创一个向量
> a <- c(2,3,4,2,5,1,6,3,2,5,8,5,7,3)
# 排序向量
> sort(a)
[1] 1 2 2 2 3 3 3 4 5 5 5 6 7 8
# 把排序好的向量倒序
> rev(sort(a))
[1] 8 7 6 5 5 5 4 3 3 3 2 2 2 1
四、矩阵部分
此部分为矩阵的一些写法以及计算技巧
- 1、matrix()函数
代码语言:javascript复制创建矩阵用matrix()函数
> a1 <- c(1:12)
# 创建一个三行四列的矩阵
> matrix(a1,3,4)
[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12
# 创建一个四行三列的矩阵,如果不设置byrow,则默认为从上到下排序
> matrix(a1,4,3)
[,1] [,2] [,3]
[1,] 1 5 9
[2,] 2 6 10
[3,] 3 7 11
[4,] 4 8 12
# 创建一个四行三列的矩阵
> matrix(a1,4,3,TRUE)
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9
[4,] 10 11 12
- 2、t()函数
代码语言:javascript复制实现矩阵的转置,行变列,列变行
> a <- matrix(1:12,nrow = 3,ncol = 4)
> a
[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12
# 行列互换
> t(a)
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9
[4,] 10 11 12
- 3、矩阵加减
> a <- b <- matrix(1:12,nrow = 3,ncol = 4)
> a b
[,1] [,2] [,3] [,4]
[1,] 2 8 14 20
[2,] 4 10 16 22
[3,] 6 12 18 24
> a-b
[,1] [,2] [,3] [,4]
[1,] 0 0 0 0
[2,] 0 0 0 0
[3,] 0 0 0 0
- 4、矩阵相乘
> a <- matrix(1:12,nrow = 3,ncol = 4)
> b <- matrix(1:12,nrow = 4,ncol = 3)
> a%*%b 线代矩阵相乘
[,1] [,2] [,3]
[1,] 70 158 246
[2,] 80 184 288
[3,] 90 210 330
- 5、diag()函数
代码语言:javascript复制求对角线,diag()函数
> a <- matrix(1:16,nrow = 4,ncol = 4)
> a
[,1] [,2] [,3] [,4]
[1,] 1 5 9 13
[2,] 2 6 10 14
[3,] 3 7 11 15
[4,] 4 8 12 16
# 返回对角线
> diag(a)
[1] 1 6 11 16
# 对角线矩阵
> diag(diag(a))
[,1] [,2] [,3] [,4]
[1,] 1 0 0 0
[2,] 0 6 0 0
[3,] 0 0 11 0
[4,] 0 0 0 16
# 产生一个四阶的单位矩阵
> diag(4)
[,1] [,2] [,3] [,4]
[1,] 1 0 0 0
[2,] 0 1 0 0
[3,] 0 0 1 0
[4,] 0 0 0 1
- 6、矩阵求逆,逆矩阵
代码语言:javascript复制solve()函数
# 先使用rnorm函数随机生成16个随机数,并创建矩阵
> a <- matrix(rnorm(16),4,4)
> a
[,1] [,2] [,3] [,4]
[1,] 0.19496384 -1.32876618 0.8009854 0.1090159
[2,] 0.83996855 -1.31302374 0.4815483 -0.2333306
[3,] -1.71094415 0.03186264 -0.5280415 2.3790375
[4,] -0.03161188 0.85040187 0.4736652 -0.5227957
# solve()函数可以直接求逆
> solve(a)
[,1] [,2] [,3] [,4]
[1,] -2.3313965 3.2960835 0.7418279 1.418528
[2,] -1.1575768 1.2092526 0.4392610 1.217815
[3,] 0.1181362 0.8574405 0.4068229 1.493238
[4,] -1.6349574 2.5445791 1.0382558 1.335292
- 7、解线性方程组
代码语言:javascript复制solve()函数还能解线性方程
eg: ax=b
> a <- matrix(rnorm(16),4,4)
> a
[,1] [,2] [,3] [,4]
[1,] 1.2319870 -0.1801956 0.1470676 0.01413551
[2,] -0.2092927 0.2776381 1.0411766 0.44004831
[3,] 1.3762975 -0.6371769 -1.3026650 -1.20290275
[4,] 0.1149844 0.4075077 0.1193776 -0.21052398
> b <- c(1:4)
> b
[1] 1 2 3 4
> solve(a,b)
[1] 0.894783 3.750849 4.723690 -8.572473
- 8、eigen()函数
代码语言:javascript复制用来求矩阵的特征值与特征向量
> a <- diag(4) 1
> a
[,1] [,2] [,3] [,4]
[1,] 2 1 1 1
[2,] 1 2 1 1
[3,] 1 1 2 1
[4,] 1 1 1 2
> a.e = eigen(a,symmetric = T)
> a.e
eigen() decomposition
$values
[1] 5 1 1 1
$vectors
[,1] [,2] [,3] [,4]
[1,] -0.5 0.8660254 0.0000000 0.0000000
[2,] -0.5 -0.2886751 -0.5773503 -0.5773503
[3,] -0.5 -0.2886751 -0.2113249 0.7886751
[4,] -0.5 -0.2886751 0.7886751 -0.2113249