Spark内核详解 (1) | Spark内核的简要概述

2020-10-28 17:35:58 浏览数 (1)

Spark 内核泛指 Spark 的核心运行机制

  包括 Spark 核心组件的运行机制、Spark 任务调度机制、Spark 内存管理机制、Spark 核心功能的运行原理等

  熟练掌握 Spark 内核原理,能够帮助我们更好地完成 Spark 代码设计,并能够帮助我们准确锁定项目运行过程中出现的问题的症结所在。

一. Spark 核心组件

  • 1. Cluster Manager(Master, ResourceManager)

Spark 的集群管理器, 主要负责对整个集群资源的分配与管理.

Cluster Manager 在 Yarn 部署模式下为 ResourceManager; 在 Mesos 部署模式下为 Mesos Master; 在 Standalone 部署模式下为 Master.

Cluster Manager 分配的资源属于一级分配, 它将各个 Worker 上的内存, CPU 等资源分配给 Application, 但并不负责对 Executor 的资源的分配.

  • 2. Worker(Worker, NodeManager)

Spark 的工作节点.

在 Yarn 部署模式下实际由 NodeManager 替代.

主要负责以下工作

  • 将自己的内存, CPU 等资源通过注册机制告知 Cluster Manager
  • 创建 Executor进程
  • 将资源和任务进一步分配给 Executor
  • 同步资源信息, Executor 状态信息给 ClusterManager 等.
  • 3. Driver

Spark 驱动器节点,用于执行 Spark 任务中的 main 方法,负责实际代码的执行工作。

Driver 在 Spark 作业执行时主要负责:

  1. 将用户程序转化为作业(Job);
  2. 在 Executor 之间调度任务(Task);
  3. 跟踪 Executor 的执行情况;
  4. 通过 UI 展示查询运行情况;
  • 4. Executor

Spark Executor 节点是负责在 Spark 作业中运行具体任务,任务彼此之间相互独立。

Spark 应用启动时,Executor 节点被同时启动,并且始终伴随着整个 Spark 应用的生命周期而存在。

如果有 Executor 节点发生了故障或崩溃,Spark 应用也可以继续执行,会将出错节点上的任务调度到其他 Executor 节点上继续运行。

Executor 有两个核心功能:

  1. 负责运行组成 Spark 应用的任务,并将结果返回给驱动器(Driver);
  2. 它们通过自身的块管理器(Block Manager)为用户程序中要求缓存的 RDD 提供内存式存储。RDD 的数据是直接缓存在 Executor 进程内的,因此任务可以在运行时充分利用缓存数据加速运算。
  • 5. Application

用户使用 Spark 提供的 API 编写的应用程序.

  • Application 通过 Spark API 将进行 RDD 的转换和 DAG 的构建, 并通过 DriverApplication 注册到 Cluster Manager.
  • Cluster Manager 将会根据 Application 的资源需求, 通过一级分配将 Executor, 内存, CPU 等资源分配给 Application.
  • Driver 通过二级分配将 Executor 等资源分配给每一个任务, Application 最后通过 Driver 告诉Executor 运行任务

二. Spark 通用运行流程

上图为 Spark 通用运行流程,不论 Spark 以何种模式进行部署,都是以如下核心步骤进行工作的:

  1. 任务提交后,都会先启动 Driver 程序;
  2. 随后 Driver 向集群管理器注册应用程序;
  3. 之后集群管理器根据此任务的配置文件分配 Executor 并启动该应用程序;
  4. 当 Driver 所需的资源全部满足后,Driver 开始执行 main 函数,Spark 转换为懒执行,当执行到 Action 算子时开始反向推算,根据宽依赖进行 Stage 的划分,随后每一个 Stage 对应一个 Taskset,Taskset 中有多个Task;
  5. 根据本地化原则,Task 会被分发到指定的 Executor 去执行,在任务执行的过程中,Executor 也会不断与 Driver 进行通信,报告任务运行情况。

  本次的分享就到这里了

0 人点赞