在 SparkSQL 中 Spark 为我们提供了两个新的抽象,分别是DataFrame和DataSet。他们和RDD有什么区别呢?首先从版本的产生上来看:
RDD (Spark1.0) —> Dataframe(Spark1.3) —> Dataset(Spark1.6)
如果同样的数据都给到这三个数据结构,他们分别计算之后,都会给出相同的结果。不同是的他们的执行效率和执行方式。 在后期的 Spark 版本中,DataSet会逐步取代RDD和DataFrame成为唯一的 API 接口。
一. 三者的共性
- RDD、DataFrame、Dataset全都是 Spark 平台下的分布式弹性数据集,为处理超大型数据提供便利
- 三者都有惰性机制,在进行创建、转换,如map方法时,不会立即执行,只有在遇到Action如foreach时,三者才会开始遍历运算。
- 三者都会根据 Spark 的内存情况自动缓存运算,这样即使数据量很大,也不用担心会内存溢出
- 三者都有partition的概念
- 三者有许多共同的函数,如map, filter,排序等
- 在对 DataFrame和Dataset进行操作许多操作都需要这个包进行支持 import spark.implicits._
- DataFrame和Dataset均可使用模式匹配获取各个字段的值和类型
// DataFrame:
testDF.map{
case Row(col1:String,col2:Int)=>
println(col1);println(col2)
col1
case _=>
""
}
// Dataset:
case class Coltest(col1:String,col2:Int)extends Serializable //定义字段名和类型
testDS.map{
case Coltest(col1:String,col2:Int)=>
println(col1);println(col2)
col1
case _=>
""
}
二. 三者的区别
2.1 RDD
- RDD一般和spark mlib同时使用
- RDD不支持sparksql操作
2.2 DataFrame
- 与RDD和Dataset不同,DataFrame每一行的类型固定为Row,每一列的值没法直接访问,只有通过解析才能获取各个字段的值,
testDF.foreach{
line =>
val col1=line.getAs[String]("col1")
val col2=line.getAs[String]("col2")
}
- DataFrame与DataSet一般不与 spark mlib 同时使用
- DataFrame与DataSet均支持 SparkSQL 的操作,比如select,groupby之类,还能注册临时表/视窗,进行 sql 语句操作
dataDF.createOrReplaceTempView("tmp")
spark.sql("select ROW,DATE from tmp where DATE is not null order by DATE").show(100,false)
- DataFrame与DataSet支持一些特别方便的保存方式,比如保存成csv,可以带上表头,这样每一列的字段名一目了然
//保存
val saveoptions = Map("header" -> "true", "delimiter" -> "t", "path" -> "hdfs://hadoop002:9000/test")
datawDF.write.format("com.buwenbuhuo.spark.csv").mode(SaveMode.Overwrite).options(saveoptions).save()
//读取
val options = Map("header" -> "true", "delimiter" -> "t", "path" -> "hdfs://hadoop002:9000/test")
val datarDF= spark.read.options(options).format("com.buwenbuhuo.spark.csv").load()
利用这样的保存方式,可以方便的获得字段名和列的对应,而且分隔符(delimiter)可以自由指定。
2.3 DataSet
- Dataset和DataFrame拥有完全相同的成员函数,区别只是每一行的数据类型不同。 DataFrame其实就是DataSet的一个特例
- DataFrame也可以叫Dataset[Row],每一行的类型是Row,不解析,每一行究竟有哪些字段,各个字段又是什么类型都无从得知,只能用上面提到的getAS方法或者共性中的第七条提到的模式匹配拿出特定字段。而Dataset中,每一行是什么类型是不一定的,在自定义了case class之后可以很自由的获得每一行的信息
case class Coltest(col1:String,col2:Int)extends Serializable //定义字段名和类型
/**
rdd
("a", 1)
("b", 1)
("a", 1)
**/
val test: Dataset[Coltest]=rdd.map{line=>
Coltest(line._1,line._2)
}.toDS
test.map{
line=>
println(line.col1)
println(line.col2)
}
可以看出,Dataset在需要访问列中的某个字段时是非常方便的,然而,如果要写一些适配性很强的函数时,如果使用Dataset,行的类型又不确定,可能是各种case class,无法实现适配,这时候用DataFrame即Dataset[Row]就能比较好的解决问题
三. 三者的互相转换
本次的分享就到这里了