GPU/python环境配置与验证。
(1)GPU加速型实例安装NVIDIA GPU驱动及CUDA工具包
(2)华为云linux服务器部署TensorFlow-gpu全攻略:https://www.cnblogs.com/zxyza/p/10535939.html
(3) Ubuntu安装Anaconda3: https://www.jianshu.com/p/d9fb4e65483c
(4)添加环境变量: vim ~/.bashrc
代码语言:javascript复制 export PATH="/root/anaconda3/bin:$PATH"
export PATH=/usr/local/cuda/bin{PATH: :{PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda/lib64{LD_LIBRARY_PATH: :{LD_LIBRARY_PATH}}
export CUDA_HOME=/usr/local/cuda
(5)source ~/.bashrc
(6)创建虚拟环境:
conda create -n py37 python=3.7
进入环境
source activate py37
conda activate py37
退出环境
source deactivate
conda deactivate
(7)source activate py37
(8)安装tensorflow-gpu:pip install tensorflow-gpu==1.13.1 -i https://pypi.tuna.tsinghua.edu.cn/simple
(9)测试:
import tensorflow as tf
import os
# os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
print('GPU>>>>>>', tf.test.is_gpu_available())
a = tf.constant(2.0)
b = tf.constant(4.0)
print(a b)
(10) 结果:
GPU>>>>>> True
Tensor("add:0", shape=(), dtype=float32)
(11) 不同版本torch安装:
代码语言:javascript复制conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=10.0
conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=10.0
conda install pytorch==1.5.0 torchvision==0.6.0 cudatoolkit=10.1
上述命令直接安装太太太慢了,可以通过更换conda源来加速下载。
代码语言:javascript复制# 修改conda配置
vim .condarc
# 在配置钟添加清华源
channels:
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/menpo/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
- default
show_channel_urls: true
# 安装pytorch和对应版本的cudatoolkit
conda install pytorch=1.4.0 torchvision cudatoolkit=10.1