run examples
代码语言:javascript复制git clone https://github.com/MachineLP/TextMatch
cd TextMatch
export PYTHONPATH=${PYTHONPATH}:../TextMatch
python tests/tools_test/faiss_test.py
tests/tools_test/faiss_test.py
代码语言:javascript复制import sys
import json
import time
import faiss
import numpy as np
from faiss import normalize_L2
from textmatch.config.constant import Constant as const
from textmatch.core.text_embedding import TextEmbedding
from textmatch.tools.decomposition.pca import PCADecomposition
from textmatch.tools.faiss.faiss import FaissSearch
test_dict = {"id0": "其实事物发展有自己的潮流和规律",
"id1": "当你身处潮流之中的时候,要紧紧抓住潮流的机会",
"id2": "想办法脱颖而出,即使没有成功,也会更加洞悉时代的脉搏",
"id3": "收获珍贵的知识和经验。而如果潮流已经退去",
"id4": "这个时候再去往这个方向上努力,只会收获迷茫与压抑",
"id5": "对时代、对自己都没有什么帮助",
"id6": "但是时代的浪潮犹如海滩上的浪花,总是一浪接着一浪,只要你站在海边,身处这个行业之中,下一个浪潮很快又会到来。你需要敏感而又深刻地去观察,略去那些浮躁的泡沫,抓住真正潮流的机会,奋力一搏,不管成败,都不会遗憾。",
"id7": "其实事物发展有自己的潮流和规律",
"id8": "当你身处潮流之中的时候,要紧紧抓住潮流的机会" }
if __name__ == '__main__':
# ['bow', 'tfidf', 'ngram_tfidf', 'bert']
# ['bow', 'tfidf', 'ngram_tfidf', 'bert', 'w2v']
# text_embedding = TextEmbedding( match_models=['bow', 'tfidf', 'ngram_tfidf', 'w2v'], words_dict=test_dict )
text_embedding = TextEmbedding( match_models=['bow', 'tfidf', 'ngram_tfidf', 'w2v'], words_dict=None, update=False )
feature_list = []
for sentence in test_dict.values():
pre = text_embedding.predict(sentence)
feature = np.concatenate([pre[model] for model in ['bow', 'tfidf', 'ngram_tfidf', 'w2v']], axis=0)
feature_list.append(feature)
pca = PCADecomposition(n_components=8)
data = np.array( feature_list )
pca.fit( data )
res = pca.transform( data )
print('res>>', res)
pre = text_embedding.predict("潮流和规律")
feature = np.concatenate([pre[model] for model in ['bow', 'tfidf', 'ngram_tfidf', 'w2v']], axis=0)
test = pca.transform( [feature] )
faiss_search = FaissSearch( res, sport_mode=False )
faiss_res = faiss_search.predict( test )
print( "faiss_res:", faiss_res )
'''
faiss kmeans result times 8.0108642578125e-05
faiss_res: [{0: 0.7833399, 7: 0.7833399, 3: 0.63782495}]
'''
faiss_search = FaissSearch( res, sport_mode=True )
faiss_res = faiss_search.predict( test )
print( "faiss_res:", faiss_res )
'''
faiss kmeans result times 3.266334533691406e-05
faiss_res: [{0: 0.7833399, 7: 0.7833399, 3: 0.63782495}]
'''