tensorflow dataset.shuffle、dataset.batch、dataset.repeat顺序区别详解

2020-11-02 10:12:19 浏览数 (1)

1.作用

  • dataset.shuffle作用是将数据进行打乱操作,传入参数为buffer_size,改参数为设置“打乱缓存区大小”,也就是说程序会维持一个buffer_size大小的缓存,每次都会随机在这个缓存区抽取一定数量的数据
  • dataset.batch作用是将数据打包成batch_size
  • dataset.repeat作用就是将数据重复使用多少epoch

2.各种不同顺序的区别

示例代码(以下面代码作为说明):

代码语言:javascript复制
# -*- coding: utf-8 -*-
import tensorflow as tf
import numpy as np
 
dataset = tf.data.Dataset.from_tensor_slices(np.arange(20).reshape((4, 5)))
 
dataset = dataset.shuffle(100)
dataset = dataset.batch(3)
dataset = dataset.repeat(2)
 
sess = tf.Session()
 
iterator = dataset.make_one_shot_iterator()
input_x = iterator.get_next()
 
print(sess.run(input_x))
print(sess.run(input_x))
print(sess.run(input_x))
print(sess.run(input_x))

1.顺序1(训练过程最常用的顺序)

先看结果:

解释:相当于把所有数据先打乱,然后打包成batch输出,整体数据重复2个epoch

特点:1.一个batch中的数据不会重复;2.每个epoch的最后一个batch的尺寸小于等于batch_size

2.顺序2

先看结果:

解释:相当于把所有数据先打乱,再把所有数据重复两个epoch,然后将重复两个epoch的数据放在一起,最后打包成batch_size输出

特点:1.因为把数据复制两份,还进行打乱,因此某个batch数据可能会重复,而且出现重复数据的batch只会是两个batch交叉的位置;2.最后一个batch的尺寸小于等于batch_size

3.顺序3

先看结果:

解释:相当于把所有数据先打包成batch,然后把打包成batch的数据重复两遍,最后再将所有batch打乱进行输出

特点:1.打乱的是batch;2.某些batch的尺寸小于等于batch_size,因为是对batch进行打乱,所以这些batch不一定是最后一个

3.其他组合方式

根据上面几种顺序,大家可以自己分析其他顺序的输出结果

到此这篇关于tensorflow dataset.shuffle、dataset.batch、dataset.repeat顺序区别详解的文章就介绍到这了

0 人点赞