Keras提供了一些用ImageNet训练过的模型:Xception,VGG16,VGG19,ResNet50,InceptionV3。在使用这些模型的时候,有一个参数include_top表示是否包含模型顶部的全连接层,如果包含,则可以将图像分为ImageNet中的1000类,如果不包含,则可以利用这些参数来做一些定制的事情。
在运行时自动下载有可能会失败,需要去网站中手动下载,放在“~/.keras/models/”中,使用WinPython则在“settings/.keras/models/”中。
修正:表示当前是训练模式还是测试模式的参数K.learning_phase()文中表述和使用有误,在该函数说明中可以看到:
The learning phase flag is a bool tensor (0 = test, 1 = train),所以0是测试模式,1是训练模式,部分网络结构下两者有差别。
这里使用ResNet50预训练模型,对Caltech101数据集进行图像分类。只有CPU,运行较慢,但是在训练集固定的情况下,较慢的过程只需要运行一次。
该预训练模型的中文文档介绍在http://keras-cn.readthedocs.io/en/latest/other/application/#resnet50。
我使用的版本:
1.Ubuntu 16.04.3
2.Python 2.7
3.Keras 2.0.8
4.Tensoflow 1.3.0
5.Numpy 1.13.1
6.python-opencv 2.4.9.1 dfsg-1.5ubuntu1
7.h5py 2.7.0
从文件夹中提取图像数据的方式:
函数:
代码语言:javascript复制def eachFile(filepath): #将目录内的文件名放入列表中
pathDir = os.listdir(filepath)
out = []
for allDir in pathDir:
child = allDir.decode('gbk') # .decode('gbk')是解决中文显示乱码问题
out.append(child)
return out
def get_data(data_name,train_left=0.0,train_right=0.7,train_all=0.7,resize=True,data_format=None,t=''): #从文件夹中获取图像数据
file_name = os.path.join(pic_dir_out,data_name t '_' str(train_left) '_' str(train_right) '_' str(Width) "X" str(Height) ".h5")
print file_name
if os.path.exists(file_name): #判断之前是否有存到文件中
f = h5py.File(file_name,'r')
if t=='train':
X_train = f['X_train'][:]
y_train = f['y_train'][:]
f.close()
return (X_train, y_train)
elif t=='test':
X_test = f['X_test'][:]
y_test = f['y_test'][:]
f.close()
return (X_test, y_test)
else:
return
data_format = conv_utils.normalize_data_format(data_format)
pic_dir_set = eachFile(pic_dir_data)
X_train = []
y_train = []
X_test = []
y_test = []
label = 0
for pic_dir in pic_dir_set:
print pic_dir_data pic_dir
if not os.path.isdir(os.path.join(pic_dir_data,pic_dir)):
continue
pic_set = eachFile(os.path.join(pic_dir_data,pic_dir))
pic_index = 0
train_count = int(len(pic_set)*train_all)
train_l = int(len(pic_set)*train_left)
train_r = int(len(pic_set)*train_right)
for pic_name in pic_set:
if not os.path.isfile(os.path.join(pic_dir_data,pic_dir,pic_name)):
continue
img = cv2.imread(os.path.join(pic_dir_data,pic_dir,pic_name))
if img is None:
continue
if (resize):
img = cv2.resize(img,(Width,Height))
img = img.reshape(-1,Width,Height,3)
if (pic_index < train_count):
if t=='train':
if (pic_index = train_l and pic_index < train_r):
X_train.append(img)
y_train.append(label)
else:
if t=='test':
X_test.append(img)
y_test.append(label)
pic_index = 1
if len(pic_set) < 0:
label = 1
f = h5py.File(file_name,'w')
if t=='train':
X_train = np.concatenate(X_train,axis=0)
y_train = np.array(y_train)
f.create_dataset('X_train', data = X_train)
f.create_dataset('y_train', data = y_train)
f.close()
return (X_train, y_train)
elif t=='test':
X_test = np.concatenate(X_test,axis=0)
y_test = np.array(y_test)
f.create_dataset('X_test', data = X_test)
f.create_dataset('y_test', data = y_test)
f.close()
return (X_test, y_test)
else:
return
调用:
代码语言:javascript复制 global Width, Height, pic_dir_out, pic_dir_data
Width = 224
Height = 224
num_classes = 102 #Caltech101为102 cifar10为10
pic_dir_out = '/home/ccuux3/pic_cnn/pic_out/'
pic_dir_data = '/home/ccuux3/pic_cnn/pic_dataset/Caltech101/'
sub_dir = '224_resnet50/'
if not os.path.isdir(os.path.join(pic_dir_out,sub_dir)):
os.mkdir(os.path.join(pic_dir_out,sub_dir))
pic_dir_mine = os.path.join(pic_dir_out,sub_dir)
(X_train, y_train) = get_data("Caltech101_color_data_",0.0,0.7,data_format='channels_last',t='train')
y_train = np_utils.to_categorical(y_train, num_classes)
载入预训练模型ResNet50,并将训练图像经过网络运算得到数据,不包含顶部的全连接层,得到的结果存成文件,以后可以直接调用(由于我内存不够,所以拆分了一下):
代码语言:javascript复制 input_tensor = Input(shape=(224, 224, 3))
base_model = ResNet50(input_tensor=input_tensor,include_top=False,weights='imagenet')
#base_model = ResNet50(input_tensor=input_tensor,include_top=False,weights=None)
get_resnet50_output = K.function([base_model.layers[0].input, K.learning_phase()],
[base_model.layers[-1].output])
file_name = os.path.join(pic_dir_mine,'resnet50_train_output' '.h5')
if os.path.exists(file_name):
f = h5py.File(file_name,'r')
resnet50_train_output = f['resnet50_train_output'][:]
f.close()
else:
resnet50_train_output = []
delta = 10
for i in range(0,len(X_train),delta):
print i
one_resnet50_train_output = get_resnet50_output([X_train[i:i delta], 0])[0]
resnet50_train_output.append(one_resnet50_train_output)
resnet50_train_output = np.concatenate(resnet50_train_output,axis=0)
f = h5py.File(file_name,'w')
f.create_dataset('resnet50_train_output', data = resnet50_train_output)
f.close()
将ResNet50网络产生的结果用于图像分类:
代码语言:javascript复制 input_tensor = Input(shape=(1, 1, 2048))
x = Flatten()(input_tensor)
x = Dense(1024, activation='relu')(x)
predictions = Dense(num_classes, activation='softmax')(x)
model = Model(inputs=input_tensor, outputs=predictions)
model.compile(optimizer=Adam(), loss='categorical_crossentropy',metrics=['accuracy'])
训练图像数据集:
代码语言:javascript复制 print('nTraining ------------') #从文件中提取参数,训练后存在新的文件中
cm = 0 #修改这个参数可以多次训练
cm_str = '' if cm==0 else str(cm)
cm2_str = '' if (cm 1)==0 else str(cm 1)
if cm = 1:
model.load_weights(os.path.join(pic_dir_mine,'cnn_model_Caltech101_resnet50_' cm_str '.h5'))
model.fit(resnet50_train_output, y_train, epochs=10, batch_size=128,)
model.save_weights(os.path.join(pic_dir_mine,'cnn_model_Caltech101_resnet50_' cm2_str '.h5'))
测试图像数据集:
代码语言:javascript复制 (X_test, y_test) = get_data("Caltech101_color_data_",0.0,0.7,data_format='channels_last',t='test')
y_test = np_utils.to_categorical(y_test, num_classes)
file_name = os.path.join(pic_dir_mine,'resnet50_test_output' '.h5')
if os.path.exists(file_name):
f = h5py.File(file_name,'r')
resnet50_test_output = f['resnet50_test_output'][:]
f.close()
else:
resnet50_test_output = []
delta = 10
for i in range(0,len(X_test),delta):
print i
one_resnet50_test_output = get_resnet50_output([X_test[i:i delta], 0])[0]
resnet50_test_output.append(one_resnet50_test_output)
resnet50_test_output = np.concatenate(resnet50_test_output,axis=0)
f = h5py.File(file_name,'w')
f.create_dataset('resnet50_test_output', data = resnet50_test_output)
f.close()
print('nTesting ------------') #对测试集进行评估
class_name_list = get_name_list(pic_dir_data) #获取top-N的每类的准确率
pred = model.predict(resnet50_test_output, batch_size=32)
输出测试集各类别top-5的准确率:
代码语言:javascript复制 N = 5
pred_list = []
for row in pred:
pred_list.append(row.argsort()[-N:][::-1]) #获取最大的N个值的下标
pred_array = np.array(pred_list)
test_arg = np.argmax(y_test,axis=1)
class_count = [0 for _ in xrange(num_classes)]
class_acc = [0 for _ in xrange(num_classes)]
for i in xrange(len(test_arg)):
class_count[test_arg[i]] = 1
if test_arg[i] in pred_array[i]:
class_acc[test_arg[i]] = 1
print('top-' str(N) ' all acc:',str(sum(class_acc)) '/' str(len(test_arg)),sum(class_acc)/float(len(test_arg)))
for i in xrange(num_classes):
print (i, class_name_list[i], 'acc: ' str(class_acc[i]) '/' str(class_count[i]))
完整代码:
代码语言:javascript复制# -*- coding: utf-8 -*-
import cv2
import numpy as np
import h5py
import os
from keras.utils import np_utils, conv_utils
from keras.models import Model
from keras.layers import Flatten, Dense, Input
from keras.optimizers import Adam
from keras.applications.resnet50 import ResNet50
from keras import backend as K
def get_name_list(filepath): #获取各个类别的名字
pathDir = os.listdir(filepath)
out = []
for allDir in pathDir:
if os.path.isdir(os.path.join(filepath,allDir)):
child = allDir.decode('gbk') # .decode('gbk')是解决中文显示乱码问题
out.append(child)
return out
def eachFile(filepath): #将目录内的文件名放入列表中
pathDir = os.listdir(filepath)
out = []
for allDir in pathDir:
child = allDir.decode('gbk') # .decode('gbk')是解决中文显示乱码问题
out.append(child)
return out
def get_data(data_name,train_left=0.0,train_right=0.7,train_all=0.7,resize=True,data_format=None,t=''): #从文件夹中获取图像数据
file_name = os.path.join(pic_dir_out,data_name t '_' str(train_left) '_' str(train_right) '_' str(Width) "X" str(Height) ".h5")
print file_name
if os.path.exists(file_name): #判断之前是否有存到文件中
f = h5py.File(file_name,'r')
if t=='train':
X_train = f['X_train'][:]
y_train = f['y_train'][:]
f.close()
return (X_train, y_train)
elif t=='test':
X_test = f['X_test'][:]
y_test = f['y_test'][:]
f.close()
return (X_test, y_test)
else:
return
data_format = conv_utils.normalize_data_format(data_format)
pic_dir_set = eachFile(pic_dir_data)
X_train = []
y_train = []
X_test = []
y_test = []
label = 0
for pic_dir in pic_dir_set:
print pic_dir_data pic_dir
if not os.path.isdir(os.path.join(pic_dir_data,pic_dir)):
continue
pic_set = eachFile(os.path.join(pic_dir_data,pic_dir))
pic_index = 0
train_count = int(len(pic_set)*train_all)
train_l = int(len(pic_set)*train_left)
train_r = int(len(pic_set)*train_right)
for pic_name in pic_set:
if not os.path.isfile(os.path.join(pic_dir_data,pic_dir,pic_name)):
continue
img = cv2.imread(os.path.join(pic_dir_data,pic_dir,pic_name))
if img is None:
continue
if (resize):
img = cv2.resize(img,(Width,Height))
img = img.reshape(-1,Width,Height,3)
if (pic_index < train_count):
if t=='train':
if (pic_index = train_l and pic_index < train_r):
X_train.append(img)
y_train.append(label)
else:
if t=='test':
X_test.append(img)
y_test.append(label)
pic_index = 1
if len(pic_set) < 0:
label = 1
f = h5py.File(file_name,'w')
if t=='train':
X_train = np.concatenate(X_train,axis=0)
y_train = np.array(y_train)
f.create_dataset('X_train', data = X_train)
f.create_dataset('y_train', data = y_train)
f.close()
return (X_train, y_train)
elif t=='test':
X_test = np.concatenate(X_test,axis=0)
y_test = np.array(y_test)
f.create_dataset('X_test', data = X_test)
f.create_dataset('y_test', data = y_test)
f.close()
return (X_test, y_test)
else:
return
def main():
global Width, Height, pic_dir_out, pic_dir_data
Width = 224
Height = 224
num_classes = 102 #Caltech101为102 cifar10为10
pic_dir_out = '/home/ccuux3/pic_cnn/pic_out/'
pic_dir_data = '/home/ccuux3/pic_cnn/pic_dataset/Caltech101/'
sub_dir = '224_resnet50/'
if not os.path.isdir(os.path.join(pic_dir_out,sub_dir)):
os.mkdir(os.path.join(pic_dir_out,sub_dir))
pic_dir_mine = os.path.join(pic_dir_out,sub_dir)
(X_train, y_train) = get_data("Caltech101_color_data_",0.0,0.7,data_format='channels_last',t='train')
y_train = np_utils.to_categorical(y_train, num_classes)
input_tensor = Input(shape=(224, 224, 3))
base_model = ResNet50(input_tensor=input_tensor,include_top=False,weights='imagenet')
#base_model = ResNet50(input_tensor=input_tensor,include_top=False,weights=None)
get_resnet50_output = K.function([base_model.layers[0].input, K.learning_phase()],
[base_model.layers[-1].output])
file_name = os.path.join(pic_dir_mine,'resnet50_train_output' '.h5')
if os.path.exists(file_name):
f = h5py.File(file_name,'r')
resnet50_train_output = f['resnet50_train_output'][:]
f.close()
else:
resnet50_train_output = []
delta = 10
for i in range(0,len(X_train),delta):
print i
one_resnet50_train_output = get_resnet50_output([X_train[i:i delta], 0])[0]
resnet50_train_output.append(one_resnet50_train_output)
resnet50_train_output = np.concatenate(resnet50_train_output,axis=0)
f = h5py.File(file_name,'w')
f.create_dataset('resnet50_train_output', data = resnet50_train_output)
f.close()
input_tensor = Input(shape=(1, 1, 2048))
x = Flatten()(input_tensor)
x = Dense(1024, activation='relu')(x)
predictions = Dense(num_classes, activation='softmax')(x)
model = Model(inputs=input_tensor, outputs=predictions)
model.compile(optimizer=Adam(), loss='categorical_crossentropy',metrics=['accuracy'])
print('nTraining ------------') #从文件中提取参数,训练后存在新的文件中
cm = 0 #修改这个参数可以多次训练
cm_str = '' if cm==0 else str(cm)
cm2_str = '' if (cm 1)==0 else str(cm 1)
if cm = 1:
model.load_weights(os.path.join(pic_dir_mine,'cnn_model_Caltech101_resnet50_' cm_str '.h5'))
model.fit(resnet50_train_output, y_train, epochs=10, batch_size=128,)
model.save_weights(os.path.join(pic_dir_mine,'cnn_model_Caltech101_resnet50_' cm2_str '.h5'))
(X_test, y_test) = get_data("Caltech101_color_data_",0.0,0.7,data_format='channels_last',t='test')
y_test = np_utils.to_categorical(y_test, num_classes)
file_name = os.path.join(pic_dir_mine,'resnet50_test_output' '.h5')
if os.path.exists(file_name):
f = h5py.File(file_name,'r')
resnet50_test_output = f['resnet50_test_output'][:]
f.close()
else:
resnet50_test_output = []
delta = 10
for i in range(0,len(X_test),delta):
print i
one_resnet50_test_output = get_resnet50_output([X_test[i:i delta], 0])[0]
resnet50_test_output.append(one_resnet50_test_output)
resnet50_test_output = np.concatenate(resnet50_test_output,axis=0)
f = h5py.File(file_name,'w')
f.create_dataset('resnet50_test_output', data = resnet50_test_output)
f.close()
print('nTesting ------------') #对测试集进行评估
class_name_list = get_name_list(pic_dir_data) #获取top-N的每类的准确率
pred = model.predict(resnet50_test_output, batch_size=32)
f = h5py.File(os.path.join(pic_dir_mine,'pred_' cm2_str '.h5'),'w')
f.create_dataset('pred', data = pred)
f.close()
N = 1
pred_list = []
for row in pred:
pred_list.append(row.argsort()[-N:][::-1]) #获取最大的N个值的下标
pred_array = np.array(pred_list)
test_arg = np.argmax(y_test,axis=1)
class_count = [0 for _ in xrange(num_classes)]
class_acc = [0 for _ in xrange(num_classes)]
for i in xrange(len(test_arg)):
class_count[test_arg[i]] = 1
if test_arg[i] in pred_array[i]:
class_acc[test_arg[i]] = 1
print('top-' str(N) ' all acc:',str(sum(class_acc)) '/' str(len(test_arg)),sum(class_acc)/float(len(test_arg)))
for i in xrange(num_classes):
print (i, class_name_list[i], 'acc: ' str(class_acc[i]) '/' str(class_count[i]))
print('----------------------------------------------------')
N = 5
pred_list = []
for row in pred:
pred_list.append(row.argsort()[-N:][::-1]) #获取最大的N个值的下标
pred_array = np.array(pred_list)
test_arg = np.argmax(y_test,axis=1)
class_count = [0 for _ in xrange(num_classes)]
class_acc = [0 for _ in xrange(num_classes)]
for i in xrange(len(test_arg)):
class_count[test_arg[i]] = 1
if test_arg[i] in pred_array[i]:
class_acc[test_arg[i]] = 1
print('top-' str(N) ' all acc:',str(sum(class_acc)) '/' str(len(test_arg)),sum(class_acc)/float(len(test_arg)))
for i in xrange(num_classes):
print (i, class_name_list[i], 'acc: ' str(class_acc[i]) '/' str(class_count[i]))
if __name__ == '__main__':
main()
运行结果:
代码语言:javascript复制Using TensorFlow backend.
/home/ccuux3/pic_cnn/pic_out/Caltech101_color_data_train_0.0_0.7_224X224.h5
Training ------------
Epoch 1/10
6353/6353 [==============================] - 5s - loss: 1.1269 - acc: 0.7494
Epoch 2/10
6353/6353 [==============================] - 4s - loss: 0.1603 - acc: 0.9536
Epoch 3/10
6353/6353 [==============================] - 4s - loss: 0.0580 - acc: 0.9855
Epoch 4/10
6353/6353 [==============================] - 4s - loss: 0.0312 - acc: 0.9931
Epoch 5/10
6353/6353 [==============================] - 4s - loss: 0.0182 - acc: 0.9956
Epoch 6/10
6353/6353 [==============================] - 4s - loss: 0.0111 - acc: 0.9976
Epoch 7/10
6353/6353 [==============================] - 4s - loss: 0.0090 - acc: 0.9981
Epoch 8/10
6353/6353 [==============================] - 4s - loss: 0.0082 - acc: 0.9987
Epoch 9/10
6353/6353 [==============================] - 4s - loss: 0.0069 - acc: 0.9994
Epoch 10/10
6353/6353 [==============================] - 4s - loss: 0.0087 - acc: 0.9987
/home/ccuux3/pic_cnn/pic_out/Caltech101_color_data_test_0.0_0.7_224X224.h5
Testing ------------
('top-1 all acc:', '2597/2792', 0.9301575931232091)
(0, u'62.mayfly', 'acc: 10/12')
(1, u'66.Motorbikes', 'acc: 240/240')
(2, u'68.octopus', 'acc: 7/11')
(3, u'94.umbrella', 'acc: 21/23')
(4, u'90.strawberry', 'acc: 10/11')
(5, u'86.stapler', 'acc: 13/14')
(6, u'83.sea_horse', 'acc: 15/18')
(7, u'72.pigeon', 'acc: 13/14')
(8, u'89.stop_sign', 'acc: 19/20')
(9, u'4.BACKGROUND_Google', 'acc: 125/141')
(10, u'22.cougar_face', 'acc: 18/21')
(11, u'81.scissors', 'acc: 9/12')
(12, u'100.wrench', 'acc: 8/12')
(13, u'57.Leopards', 'acc: 60/60')
(14, u'46.hawksbill', 'acc: 29/30')
(15, u'30.dolphin', 'acc: 19/20')
(16, u'9.bonsai', 'acc: 39/39')
(17, u'35.euphonium', 'acc: 18/20')
(18, u'44.gramophone', 'acc: 16/16')
(19, u'74.platypus', 'acc: 7/11')
(20, u'14.camera', 'acc: 15/15')
(21, u'55.lamp', 'acc: 15/19')
(22, u'38.Faces_easy', 'acc: 129/131')
(23, u'54.ketch', 'acc: 28/35')
(24, u'33.elephant', 'acc: 18/20')
(25, u'3.ant', 'acc: 8/13')
(26, u'49.helicopter', 'acc: 26/27')
(27, u'36.ewer', 'acc: 26/26')
(28, u'78.rooster', 'acc: 14/15')
(29, u'70.pagoda', 'acc: 15/15')
(30, u'58.llama', 'acc: 20/24')
(31, u'5.barrel', 'acc: 15/15')
(32, u'101.yin_yang', 'acc: 18/18')
(33, u'18.cellphone', 'acc: 18/18')
(34, u'59.lobster', 'acc: 7/13')
(35, u'17.ceiling_fan', 'acc: 14/15')
(36, u'16.car_side', 'acc: 37/37')
(37, u'50.ibis', 'acc: 24/24')
(38, u'76.revolver', 'acc: 23/25')
(39, u'84.snoopy', 'acc: 7/11')
(40, u'87.starfish', 'acc: 26/26')
(41, u'12.buddha', 'acc: 24/26')
(42, u'52.joshua_tree', 'acc: 20/20')
(43, u'43.gerenuk', 'acc: 10/11')
(44, u'65.minaret', 'acc: 23/23')
(45, u'91.sunflower', 'acc: 26/26')
(46, u'56.laptop', 'acc: 24/25')
(47, u'77.rhino', 'acc: 17/18')
(48, u'1.airplanes', 'acc: 239/240')
(49, u'88.stegosaurus', 'acc: 16/18')
(50, u'23.crab', 'acc: 17/22')
(51, u'8.binocular', 'acc: 8/10')
(52, u'31.dragonfly', 'acc: 18/21')
(53, u'6.bass', 'acc: 15/17')
(54, u'95.watch', 'acc: 72/72')
(55, u'0.accordion', 'acc: 17/17')
(56, u'98.wild_cat', 'acc: 9/11')
(57, u'67.nautilus', 'acc: 16/17')
(58, u'40.flamingo', 'acc: 20/21')
(59, u'92.tick', 'acc: 12/15')
(60, u'47.headphone', 'acc: 12/13')
(61, u'24.crayfish', 'acc: 15/21')
(62, u'97.wheelchair', 'acc: 17/18')
(63, u'27.cup', 'acc: 15/18')
(64, u'25.crocodile', 'acc: 14/15')
(65, u'2.anchor', 'acc: 7/13')
(66, u'19.chair', 'acc: 17/19')
(67, u'39.ferry', 'acc: 21/21')
(68, u'60.lotus', 'acc: 16/20')
(69, u'13.butterfly', 'acc: 26/28')
(70, u'34.emu', 'acc: 14/16')
(71, u'64.metronome', 'acc: 10/10')
(72, u'82.scorpion', 'acc: 24/26')
(73, u'7.beaver', 'acc: 12/14')
(74, u'48.hedgehog', 'acc: 16/17')
(75, u'37.Faces', 'acc: 131/131')
(76, u'45.grand_piano', 'acc: 30/30')
(77, u'79.saxophone', 'acc: 11/12')
(78, u'26.crocodile_head', 'acc: 9/16')
(79, u'80.schooner', 'acc: 15/19')
(80, u'93.trilobite', 'acc: 26/26')
(81, u'28.dalmatian', 'acc: 21/21')
(82, u'10.brain', 'acc: 28/30')
(83, u'61.mandolin', 'acc: 10/13')
(84, u'11.brontosaurus', 'acc: 11/13')
(85, u'63.menorah', 'acc: 25/27')
(86, u'85.soccer_ball', 'acc: 20/20')
(87, u'51.inline_skate', 'acc: 9/10')
(88, u'71.panda', 'acc: 11/12')
(89, u'53.kangaroo', 'acc: 24/26')
(90, u'99.windsor_chair', 'acc: 16/17')
(91, u'42.garfield', 'acc: 11/11')
(92, u'29.dollar_bill', 'acc: 16/16')
(93, u'20.chandelier', 'acc: 30/33')
(94, u'96.water_lilly', 'acc: 6/12')
(95, u'41.flamingo_head', 'acc: 13/14')
(96, u'73.pizza', 'acc: 13/16')
(97, u'21.cougar_body', 'acc: 15/15')
(98, u'75.pyramid', 'acc: 16/18')
(99, u'69.okapi', 'acc: 12/12')
(100, u'15.cannon', 'acc: 11/13')
(101, u'32.electric_guitar', 'acc: 19/23')
----------------------------------------------------
('top-5 all acc:', '2759/2792', 0.9881805157593123)
(0, u'62.mayfly', 'acc: 12/12')
(1, u'66.Motorbikes', 'acc: 240/240')
(2, u'68.octopus', 'acc: 11/11')
(3, u'94.umbrella', 'acc: 23/23')
(4, u'90.strawberry', 'acc: 11/11')
(5, u'86.stapler', 'acc: 14/14')
(6, u'83.sea_horse', 'acc: 16/18')
(7, u'72.pigeon', 'acc: 14/14')
(8, u'89.stop_sign', 'acc: 20/20')
(9, u'4.BACKGROUND_Google', 'acc: 141/141')
(10, u'22.cougar_face', 'acc: 19/21')
(11, u'81.scissors', 'acc: 11/12')
(12, u'100.wrench', 'acc: 10/12')
(13, u'57.Leopards', 'acc: 60/60')
(14, u'46.hawksbill', 'acc: 30/30')
(15, u'30.dolphin', 'acc: 20/20')
(16, u'9.bonsai', 'acc: 39/39')
(17, u'35.euphonium', 'acc: 20/20')
(18, u'44.gramophone', 'acc: 16/16')
(19, u'74.platypus', 'acc: 9/11')
(20, u'14.camera', 'acc: 15/15')
(21, u'55.lamp', 'acc: 18/19')
(22, u'38.Faces_easy', 'acc: 131/131')
(23, u'54.ketch', 'acc: 34/35')
(24, u'33.elephant', 'acc: 20/20')
(25, u'3.ant', 'acc: 10/13')
(26, u'49.helicopter', 'acc: 27/27')
(27, u'36.ewer', 'acc: 26/26')
(28, u'78.rooster', 'acc: 15/15')
(29, u'70.pagoda', 'acc: 15/15')
(30, u'58.llama', 'acc: 24/24')
(31, u'5.barrel', 'acc: 15/15')
(32, u'101.yin_yang', 'acc: 18/18')
(33, u'18.cellphone', 'acc: 18/18')
(34, u'59.lobster', 'acc: 13/13')
(35, u'17.ceiling_fan', 'acc: 14/15')
(36, u'16.car_side', 'acc: 37/37')
(37, u'50.ibis', 'acc: 24/24')
(38, u'76.revolver', 'acc: 25/25')
(39, u'84.snoopy', 'acc: 10/11')
(40, u'87.starfish', 'acc: 26/26')
(41, u'12.buddha', 'acc: 25/26')
(42, u'52.joshua_tree', 'acc: 20/20')
(43, u'43.gerenuk', 'acc: 11/11')
(44, u'65.minaret', 'acc: 23/23')
(45, u'91.sunflower', 'acc: 26/26')
(46, u'56.laptop', 'acc: 25/25')
(47, u'77.rhino', 'acc: 18/18')
(48, u'1.airplanes', 'acc: 240/240')
(49, u'88.stegosaurus', 'acc: 18/18')
(50, u'23.crab', 'acc: 22/22')
(51, u'8.binocular', 'acc: 10/10')
(52, u'31.dragonfly', 'acc: 20/21')
(53, u'6.bass', 'acc: 16/17')
(54, u'95.watch', 'acc: 72/72')
(55, u'0.accordion', 'acc: 17/17')
(56, u'98.wild_cat', 'acc: 11/11')
(57, u'67.nautilus', 'acc: 17/17')
(58, u'40.flamingo', 'acc: 21/21')
(59, u'92.tick', 'acc: 13/15')
(60, u'47.headphone', 'acc: 12/13')
(61, u'24.crayfish', 'acc: 21/21')
(62, u'97.wheelchair', 'acc: 18/18')
(63, u'27.cup', 'acc: 16/18')
(64, u'25.crocodile', 'acc: 15/15')
(65, u'2.anchor', 'acc: 12/13')
(66, u'19.chair', 'acc: 19/19')
(67, u'39.ferry', 'acc: 21/21')
(68, u'60.lotus', 'acc: 19/20')
(69, u'13.butterfly', 'acc: 27/28')
(70, u'34.emu', 'acc: 16/16')
(71, u'64.metronome', 'acc: 10/10')
(72, u'82.scorpion', 'acc: 26/26')
(73, u'7.beaver', 'acc: 14/14')
(74, u'48.hedgehog', 'acc: 17/17')
(75, u'37.Faces', 'acc: 131/131')
(76, u'45.grand_piano', 'acc: 30/30')
(77, u'79.saxophone', 'acc: 12/12')
(78, u'26.crocodile_head', 'acc: 14/16')
(79, u'80.schooner', 'acc: 19/19')
(80, u'93.trilobite', 'acc: 26/26')
(81, u'28.dalmatian', 'acc: 21/21')
(82, u'10.brain', 'acc: 30/30')
(83, u'61.mandolin', 'acc: 13/13')
(84, u'11.brontosaurus', 'acc: 13/13')
(85, u'63.menorah', 'acc: 25/27')
(86, u'85.soccer_ball', 'acc: 20/20')
(87, u'51.inline_skate', 'acc: 10/10')
(88, u'71.panda', 'acc: 12/12')
(89, u'53.kangaroo', 'acc: 26/26')
(90, u'99.windsor_chair', 'acc: 17/17')
(91, u'42.garfield', 'acc: 11/11')
(92, u'29.dollar_bill', 'acc: 16/16')
(93, u'20.chandelier', 'acc: 32/33')
(94, u'96.water_lilly', 'acc: 12/12')
(95, u'41.flamingo_head', 'acc: 14/14')
(96, u'73.pizza', 'acc: 16/16')
(97, u'21.cougar_body', 'acc: 15/15')
(98, u'75.pyramid', 'acc: 18/18')
(99, u'69.okapi', 'acc: 12/12')
(100, u'15.cannon', 'acc: 12/13')
(101, u'32.electric_guitar', 'acc: 23/23')
以上这篇使用Keras预训练模型ResNet50进行图像分类方式就是小编分享给大家的全部内容了,希望能给大家一个参考。