Python多线程实现支付模拟请求过程解析

2020-11-04 10:46:52 浏览数 (1)

思路:

  队列使用说明:

  •    multiprocessing.Queue()#用于进程间通信,单主进程与子进程无法通信(使用进程池时尽量不要使用这个)
  •    multiprocessing.Manager().Queue()#用于主子进程通信,通过进程池(pool)创建的进程可以数据共享
  •    queue.Queue()#用于线程间通信,同一进程内的数据可以共享

  1.从数据库里获取待支付的订单

  2.将获取出来的数据添加至队列(queue.Queue()),并在函数中返回消息队列的长度

  3.根据队列长度创建对应的线程数量

  4.把创建的线程放在list

  5.依次启动

  6.最后等待主线程执行完结束,统计函数运行时长

代码如下

代码语言:javascript复制
import asyncio
import sys
from queue import Queue
sys.path.append("../")
from tool.__init__ import *
from tool.decorator_token import *
import time
from threading import Thread,Lock
class doWeChatNotify(BaseTest):
def __init__(self):
super().__init__()
self.limit_num=100 #查询记录条数
self.WeChatNotify_sql='''select order_id,order_sn from fw_order where `status`=0 
and course_id=1569 ORDER BY create_time desc limit %d ;'''%(self.limit_num)
self.fwh_test_api=fwh_test_api
self.data = self.my_op.sql_operation_fwh(self.WeChatNotify_sql)
self.fwh_order_dict = {}
self.que = Queue()
@token_fwh#验证token有效性
def get_fwh_token_list(self):
token_list=self.fwh_token.loadTokenList()
return token_list
@token_crm#验证token有  def get_crm_token_list(self)    token_list=self.token.loadTokenList()
return token_list
def testDoWeChatNotify(self):
DoWeChatNotify_file='../tokenFileAndtxtFiles' '/' "DoWeChatNotify_asynchronousPay.txt"
with open(DoWeChatNotify_file,'a',encoding='utf=-8') as file:
str_first="order_idt" "order_sntn" #文件首行数据
file.write(str_first)
fwh_order_id_list, fwh_order_sn_list = [], []
if self.data!=():
for a in self.data:
fwh_order_id=a['order_id']
fwh_order_sn=a['order_sn']
self.fwh_order_dict[fwh_order_id]=fwh_order_sn
with open(DoWeChatNotify_file,'a',encoding='utf-8') as file2:#文件写入
str_DoWeChatNotifyInfo=str(fwh_order_id) 't' str(fwh_order_sn) 'tn'
file2.flush() #清除缓冲区
file2.write(str_DoWeChatNotifyInfo)
self.que.put(self.fwh_order_dict)#将数据添加至队列
#关闭数据库连接
# self.my_op.close_db_fwh()
# self.my_op.close_db()
return self.que.qsize()#返回队列数量
def asynchronousPay(self,order_id,order_sn):
count=1
count_num=50
token_list=self.get_fwh_token_list()
if (self.data!=()):
headers_form_urlencoded['token']=token_list[0]
url_wechat_success_huidiao=self.fwh_test_api '/index/Order/doWeChatNotify'
data_wechat_success_huidiao=self.data_to_str.requestDataToStr_firefoxAndChrome_fwh('''order_sn:{}
order_id:{}
meth_id:4
timestamp:157129653969
sign:0687b01b300b9e300d3996a9d2173f1380973e5a'''.format(order_sn,order_id))
request_wechat_success_huidiao=requests.post(url=url_wechat_success_huidiao,headers=headers_form_urlencoded,data=data_wechat_success_huidiao)
response_wechat_success_huidiao=request_wechat_success_huidiao.json()
if '订单状态错误,非待支付订单' in response_wechat_success_huidiao['msg']:
print(data_wechat_success_huidiao)
else:
print('待支付订单为空')
def run_multithreading(self):#多线程
threads = []#存放所有的线程
nloops = list(range(self.testDoWeChatNotify()))#获取队列数量
if len(nloops) 0:
for i,k in zip(nloops,self.que.get().items()):#根据队列数量来创建线程
t = Thread(target=self.asynchronousPay,args=(k[0],k[1]))
threads.append(t)
for s in nloops: # 开始多线程
threads[s].start()
for j in nloops: # 等待所有线程完成
threads[j].join()
else:
print("队列数量为空")
if __name__=="__main__":
start_time = time.time() # 计算程序开始时间
wechfy=doWeChatNotify()
wechfy.run_multithreading()#多线程
print('程序耗时{:.2f}'.format(time.time() - start_time)) # 计算程序总耗时

总结:亲测运行时间还是会快很多,单线程支付100个订单四十几秒的样子,多线程运行不用join2.x秒,用join八秒的样子,还有很大的优化空间,因为运行时会创建100个线程

以上就是本文的全部内容,希望对大家的学习有所帮助。

0 人点赞