Your job is simple, for each task, you should output Fn module 109 7. Input The first line has only one integer T, indicates the number of tasks.
Then, for the next T lines, each line consists of 6 integers, A , B, C, D, P, n.
1≤T≤200≤A,B,C,D≤1091≤P,n≤109 Output 36 24 Sample Input 2 3 3 2 1 3 5 3 2 2 2 1 4 Sample Output 36 24
首先处理递推式这里,因为直接递推会超时,我们考虑矩阵快速幂,然后看题,有三个未知量,我们构造3*3的矩阵,然后因为还有一个数论分块,不能直接使用矩阵快速幂,应该相等的位置使用矩阵快速幂,然后完事了
代码语言:javascript复制#include<bits/stdc .h>
using namespace std;
typedef long long ll;
const int mod = 1e9 7;
int a, b, c, d, p, n, t;
struct mat{
int m[3][3];
mat(){
memset(m, 0, sizeof(mat));
}
friend mat operator*(mat a, mat b){
mat c;
for(int i=0; i<3; i ){
for(int j=0; j<3; j ){
ll t = 0;
for(int k=0; k<3; k ){
t = (ll)a.m[i][k]*b.m[k][j];
}
c.m[i][j] = t%mod;
}
}
return c;
}
}I;
mat pow_mat(mat a, int b){
mat c = I;
while(b){
if(b&1){
c = c*a;
}
a = a*a;
b >>= 1;
}
return c;
}
int main(){
I.m[0][0] = I.m[1][1] = I.m[2][2] = 1;
scanf("%d", &t);
while(t--){
scanf("%d%d%d%d%d%d", &a, &b, &c, &d, &p, &n);
if(n == 1){
printf("%dn", a);
continue;
}
mat f;
f.m[0][0] = d;
f.m[0][1] = c;
f.m[1][0] = 1;
f.m[2][2] = 1;
int flag = 0;
for(int i=3; i<=n;){
if(p/i == 0){
mat w = f;
w = pow_mat(w, n-i 1);
ll ans = w.m[0][0]*(ll)b%mod w.m[0][1]*(ll)a w.m[0][2]%mod;
ans %= mod;
printf("%lldn", ans);
flag = 1;
break;
}
int j = min(n, p/(p/i));
mat w = f;
w.m[0][2] = p/i;
w = pow_mat(w, j-i 1);
ll tmp1 = (w.m[1][0]*(ll)b w.m[1][1]*(ll)a w.m[1][2]) % mod;
ll tmp2 = (w.m[0][0]*(ll)b w.m[0][1]*(ll)a w.m[0][2]) % mod;
a = tmp1; b = tmp2;
i = j 1;
}
if(!flag)
printf("%dn", b);
}
}