opengl光照-材质

2020-06-16 18:59:44 浏览数 (1)

一、理论介绍
  1. 按照冯氏光照模型,ambient(环境光)、diffuse(漫反射)、specular(镜面反射)、shininess(反射离散度)四个元素定义了一个物体的材质,通过改变它们能够模拟现实世界中的材质。这些材质对应的参数定义需要丰富的经验。

材质

  1. 实现材质算法,结合上一章光照的理解,一个物体真实的颜色是由“材质” “光照强度”叠加合成。光的颜色是归一化到0-1之间,但是相同色泽(色泽的说法不准确)的光的强度是不一样的(光的能量不同,比如白炽灯和太阳光照射的能量就不一样)。所以还要模拟现实世界里光的强度,给一个比例0-1之间。

这点可以结合后面的片元着色器代码来理解。

二、实现效果(基本和教程一样了)

实现效果

三、代码
1. 顶点着色器,光照的计算是在片元着色器里,顶点着色器没有变化
代码语言:javascript复制
#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec3 aNormal;

out vec3 FragPos;
out vec3 Normal;

uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;

void main()
{
    FragPos = vec3(model * vec4(aPos, 1.0));
    Normal = mat3(transpose(inverse(model))) * aNormal;  

    gl_Position = projection * view * vec4(FragPos, 1.0);
}
2. 片元着色器

片元着色器的变动较大,1)增加了光照强度 2)增加了材质参数 3)光照和材质参数封装成了struct,代码更紧密了。这里理解透彻,要对着教程一步步耐心的推导,参考:opgngl-材质的实现

代码语言:javascript复制
#version 330 core
out vec4 FragColor;

struct Material {
    vec3 ambient;
    vec3 diffuse;
    vec3 specular;    
    float shininess;
}; 

struct Light {
    vec3 position;

    vec3 ambient;
    vec3 diffuse;
    vec3 specular;
};

in vec3 FragPos;  
in vec3 Normal;  

uniform vec3 viewPos;
uniform Material material;
uniform Light light;

void main()
{
    // ambient
    vec3 ambient = light.ambient * material.ambient;

    // diffuse 
    vec3 norm = normalize(Normal);
    vec3 lightDir = normalize(light.position - FragPos);
    float diff = max(dot(norm, lightDir), 0.0);
    vec3 diffuse = light.diffuse * (diff * material.diffuse);

    // specular
    vec3 viewDir = normalize(viewPos - FragPos);
    vec3 reflectDir = reflect(-lightDir, norm);  
    float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);
    vec3 specular = light.specular * (spec * material.specular);  

    vec3 result = ambient   diffuse   specular;
    FragColor = vec4(result, 1.0);
} 
3. 主程序代码

变化:材质和光照的初始化,前面一章讲光照的基本概念,光照的参数是写死的,这里对光照做了动态变化,能动态的看到不同的光照对物体的颜色的影响,也更酷炫了。

代码语言:javascript复制
#include <glad/glad.h>
#include <GLFW/glfw3.h>

#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>

#include <learnopengl/shader_m.h>
#include <learnopengl/camera.h>

#include <iostream>

void framebuffer_size_callback(GLFWwindow* window, int width, int height);
void mouse_callback(GLFWwindow* window, double xpos, double ypos);
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
void processInput(GLFWwindow *window);

// settings
const unsigned int SCR_WIDTH = 800;
const unsigned int SCR_HEIGHT = 600;

// camera
Camera camera(glm::vec3(0.0f, 0.0f, 3.0f));
float lastX = SCR_WIDTH / 2.0f;
float lastY = SCR_HEIGHT / 2.0f;
bool firstMouse = true;

// timing
float deltaTime = 0.0f; 
float lastFrame = 0.0f;

// lighting
glm::vec3 lightPos(1.2f, 1.0f, 2.0f);

int main()
{
    // glfw: initialize and configure
    // ------------------------------
    glfwInit();
    glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
    glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
    glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);

#ifdef __APPLE__
    glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE);
#endif

    // glfw window creation
    // --------------------
    GLFWwindow* window = glfwCreateWindow(SCR_WIDTH, SCR_HEIGHT, "LearnOpenGL", NULL, NULL);
    if (window == NULL)
    {
        std::cout << "Failed to create GLFW window" << std::endl;
        glfwTerminate();
        return -1;
    }
    glfwMakeContextCurrent(window);
    glfwSetFramebufferSizeCallback(window, framebuffer_size_callback);
    glfwSetCursorPosCallback(window, mouse_callback);
    glfwSetScrollCallback(window, scroll_callback);

    // tell GLFW to capture our mouse
    glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);

    // glad: load all OpenGL function pointers
    // ---------------------------------------
    if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
    {
        std::cout << "Failed to initialize GLAD" << std::endl;
        return -1;
    }

    // configure global opengl state
    // -----------------------------
    glEnable(GL_DEPTH_TEST);

    // build and compile our shader zprogram
    // ------------------------------------
    Shader lightingShader("3.1.materials.vs", "3.1.materials.fs");
    Shader lightCubeShader("3.1.light_cube.vs", "3.1.light_cube.fs");

    // set up vertex data (and buffer(s)) and configure vertex attributes
    // ------------------------------------------------------------------
    float vertices[] = {
        -0.5f, -0.5f, -0.5f,  0.0f,  0.0f, -1.0f,
         0.5f, -0.5f, -0.5f,  0.0f,  0.0f, -1.0f,
         0.5f,  0.5f, -0.5f,  0.0f,  0.0f, -1.0f,
         0.5f,  0.5f, -0.5f,  0.0f,  0.0f, -1.0f,
        -0.5f,  0.5f, -0.5f,  0.0f,  0.0f, -1.0f,
        -0.5f, -0.5f, -0.5f,  0.0f,  0.0f, -1.0f,

        -0.5f, -0.5f,  0.5f,  0.0f,  0.0f,  1.0f,
         0.5f, -0.5f,  0.5f,  0.0f,  0.0f,  1.0f,
         0.5f,  0.5f,  0.5f,  0.0f,  0.0f,  1.0f,
         0.5f,  0.5f,  0.5f,  0.0f,  0.0f,  1.0f,
        -0.5f,  0.5f,  0.5f,  0.0f,  0.0f,  1.0f,
        -0.5f, -0.5f,  0.5f,  0.0f,  0.0f,  1.0f,

        -0.5f,  0.5f,  0.5f, -1.0f,  0.0f,  0.0f,
        -0.5f,  0.5f, -0.5f, -1.0f,  0.0f,  0.0f,
        -0.5f, -0.5f, -0.5f, -1.0f,  0.0f,  0.0f,
        -0.5f, -0.5f, -0.5f, -1.0f,  0.0f,  0.0f,
        -0.5f, -0.5f,  0.5f, -1.0f,  0.0f,  0.0f,
        -0.5f,  0.5f,  0.5f, -1.0f,  0.0f,  0.0f,

         0.5f,  0.5f,  0.5f,  1.0f,  0.0f,  0.0f,
         0.5f,  0.5f, -0.5f,  1.0f,  0.0f,  0.0f,
         0.5f, -0.5f, -0.5f,  1.0f,  0.0f,  0.0f,
         0.5f, -0.5f, -0.5f,  1.0f,  0.0f,  0.0f,
         0.5f, -0.5f,  0.5f,  1.0f,  0.0f,  0.0f,
         0.5f,  0.5f,  0.5f,  1.0f,  0.0f,  0.0f,

        -0.5f, -0.5f, -0.5f,  0.0f, -1.0f,  0.0f,
         0.5f, -0.5f, -0.5f,  0.0f, -1.0f,  0.0f,
         0.5f, -0.5f,  0.5f,  0.0f, -1.0f,  0.0f,
         0.5f, -0.5f,  0.5f,  0.0f, -1.0f,  0.0f,
        -0.5f, -0.5f,  0.5f,  0.0f, -1.0f,  0.0f,
        -0.5f, -0.5f, -0.5f,  0.0f, -1.0f,  0.0f,

        -0.5f,  0.5f, -0.5f,  0.0f,  1.0f,  0.0f,
         0.5f,  0.5f, -0.5f,  0.0f,  1.0f,  0.0f,
         0.5f,  0.5f,  0.5f,  0.0f,  1.0f,  0.0f,
         0.5f,  0.5f,  0.5f,  0.0f,  1.0f,  0.0f,
        -0.5f,  0.5f,  0.5f,  0.0f,  1.0f,  0.0f,
        -0.5f,  0.5f, -0.5f,  0.0f,  1.0f,  0.0f
    };
    // first, configure the cube's VAO (and VBO)
    unsigned int VBO, cubeVAO;
    glGenVertexArrays(1, &cubeVAO);
    glGenBuffers(1, &VBO);

    glBindBuffer(GL_ARRAY_BUFFER, VBO);
    glBufferData(GL_ARRAY_BUFFER, sizeof(vertices), vertices, GL_STATIC_DRAW);

    glBindVertexArray(cubeVAO);

    // position attribute
    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void*)0);
    glEnableVertexAttribArray(0);
    // normal attribute
    glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void*)(3 * sizeof(float)));
    glEnableVertexAttribArray(1);

    // second, configure the light's VAO (VBO stays the same; the vertices are the same for the light object which is also a 3D cube)
    unsigned int lightCubeVAO;
    glGenVertexArrays(1, &lightCubeVAO);
    glBindVertexArray(lightCubeVAO);

    glBindBuffer(GL_ARRAY_BUFFER, VBO);
    // note that we update the lamp's position attribute's stride to reflect the updated buffer data
    glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 6 * sizeof(float), (void*)0);
    glEnableVertexAttribArray(0);

    // render loop
    // -----------
    while (!glfwWindowShouldClose(window))
    {
        // per-frame time logic
        // --------------------
        float currentFrame = glfwGetTime();
        deltaTime = currentFrame - lastFrame;
        lastFrame = currentFrame;

        // input
        // -----
        processInput(window);

        // render
        // ------
        glClearColor(0.1f, 0.1f, 0.1f, 1.0f);
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

        // be sure to activate shader when setting uniforms/drawing objects
        lightingShader.use();
        lightingShader.setVec3("light.position", lightPos);
        lightingShader.setVec3("viewPos", camera.Position);

        // light properties
        glm::vec3 lightColor;
        lightColor.x = sin(glfwGetTime() * 2.0f);
        lightColor.y = sin(glfwGetTime() * 0.7f);
        lightColor.z = sin(glfwGetTime() * 1.3f);
        glm::vec3 diffuseColor = lightColor   * glm::vec3(0.5f); // decrease the influence
        glm::vec3 ambientColor = diffuseColor * glm::vec3(0.2f); // low influence
        lightingShader.setVec3("light.ambient", ambientColor);
        lightingShader.setVec3("light.diffuse", diffuseColor);
        lightingShader.setVec3("light.specular", 1.0f, 1.0f, 1.0f);

        // material properties
        lightingShader.setVec3("material.ambient", 1.0f, 0.5f, 0.31f);
        lightingShader.setVec3("material.diffuse", 1.0f, 0.5f, 0.31f);
        lightingShader.setVec3("material.specular", 0.5f, 0.5f, 0.5f); // specular lighting doesn't have full effect on this object's material
        lightingShader.setFloat("material.shininess", 32.0f);

        // view/projection transformations
        glm::mat4 projection = glm::perspective(glm::radians(camera.Zoom), (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f);
        glm::mat4 view = camera.GetViewMatrix();
        lightingShader.setMat4("projection", projection);
        lightingShader.setMat4("view", view);

        // world transformation
        glm::mat4 model = glm::mat4(1.0f);
        lightingShader.setMat4("model", model);

        // render the cube
        glBindVertexArray(cubeVAO);
        glDrawArrays(GL_TRIANGLES, 0, 36);

        // also draw the lamp object
        lightCubeShader.use();
        lightCubeShader.setMat4("projection", projection);
        lightCubeShader.setMat4("view", view);
        model = glm::mat4(1.0f);
        model = glm::translate(model, lightPos);
        model = glm::scale(model, glm::vec3(0.2f)); // a smaller cube
        lightCubeShader.setMat4("model", model);

        glBindVertexArray(lightCubeVAO);
        glDrawArrays(GL_TRIANGLES, 0, 36);

        // glfw: swap buffers and poll IO events (keys pressed/released, mouse moved etc.)
        // -------------------------------------------------------------------------------
        glfwSwapBuffers(window);
        glfwPollEvents();
    }

    // optional: de-allocate all resources once they've outlived their purpose:
    // ------------------------------------------------------------------------
    glDeleteVertexArrays(1, &cubeVAO);
    glDeleteVertexArrays(1, &lightCubeVAO);
    glDeleteBuffers(1, &VBO);

    // glfw: terminate, clearing all previously allocated GLFW resources.
    // ------------------------------------------------------------------
    glfwTerminate();
    return 0;
}

// process all input: query GLFW whether relevant keys are pressed/released this frame and react accordingly
// ---------------------------------------------------------------------------------------------------------
void processInput(GLFWwindow *window)
{
    if (glfwGetKey(window, GLFW_KEY_ESCAPE) == GLFW_PRESS)
        glfwSetWindowShouldClose(window, true);

    if (glfwGetKey(window, GLFW_KEY_W) == GLFW_PRESS)
        camera.ProcessKeyboard(FORWARD, deltaTime);
    if (glfwGetKey(window, GLFW_KEY_S) == GLFW_PRESS)
        camera.ProcessKeyboard(BACKWARD, deltaTime);
    if (glfwGetKey(window, GLFW_KEY_A) == GLFW_PRESS)
        camera.ProcessKeyboard(LEFT, deltaTime);
    if (glfwGetKey(window, GLFW_KEY_D) == GLFW_PRESS)
        camera.ProcessKeyboard(RIGHT, deltaTime);
}

// glfw: whenever the window size changed (by OS or user resize) this callback function executes
// ---------------------------------------------------------------------------------------------
void framebuffer_size_callback(GLFWwindow* window, int width, int height)
{
    // make sure the viewport matches the new window dimensions; note that width and 
    // height will be significantly larger than specified on retina displays.
    glViewport(0, 0, width, height);
}

// glfw: whenever the mouse moves, this callback is called
// -------------------------------------------------------
void mouse_callback(GLFWwindow* window, double xpos, double ypos)
{
    if (firstMouse)
    {
        lastX = xpos;
        lastY = ypos;
        firstMouse = false;
    }

    float xoffset = xpos - lastX;
    float yoffset = lastY - ypos; // reversed since y-coordinates go from bottom to top

    lastX = xpos;
    lastY = ypos;

    camera.ProcessMouseMovement(xoffset, yoffset);
}

// glfw: whenever the mouse scroll wheel scrolls, this callback is called
// ----------------------------------------------------------------------
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
{
    camera.ProcessMouseScroll(yoffset);
}
四、补充

录屏用的是quickTime(mac 上的快捷键 cmd shift 5),用ffmpeg转成gif,对代码做了点改动,调整好角度后,录屏要固定坐标,否则光标移出屏幕去点击录屏按钮,模型响应鼠标事件就挪出屏幕了。

笔者这里用的ffmpeg命令是: ffmpeg -i xxx.mov -r 15 -vf scale=iw/2:ih/2 out.gif

ffmpeg 转换,-i是输入;-r是帧率(15帧显示就够了);-vf scale缩放比例 下面两条命令有相同效果 ffmpeg -i input.mpg -s 320x240 output.mp4 ffmpeg -i input.mpg -vf scale=320:240 output.mp4

切换到录屏状态,代码很简单: 输入 y 标记开始录屏, n标记终止录屏

代码语言:javascript复制
bool startRecord = false;
void processInput(GLFWwindow *window)
{
    if (glfwGetKey(window, GLFW_KEY_Y))
    {
        std::cout << "Y" << std::endl;
        startRecord = true;
    }
    
    if (glfwGetKey(window, GLFW_KEY_N))
    {
        std::cout << "N" << std::endl;

        startRecord = false;
    }

    if (startRecord) {
        return;
    }

鼠标处理的代码也要做判断

代码语言:javascript复制
void mouse_callback(GLFWwindow* window, double xpos, double ypos)
{
    if (startRecord) {
        return;
    }

0 人点赞