同样的的单细胞研究,为什么发表的文章杂志等级差别那么大

2020-06-24 16:25:20 浏览数 (1)

新冠疫情期间,关于COVID-19病毒感染病人的单细胞研究很多,我看到《单细胞天地》解读了:COVID-19病人支气管免疫细胞单细胞测序分析,文章信息如下:

  • 题目:Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19
  • 投稿日期:2020年2月24日
  • 接收日期:2020年4月23日
  • 发表日期:2020年5月12日
  • 杂志:Nature Medicine
  • 文章在:https://www.nature.com/articles/s41591-020-0901-9

让我想起来了另外一个COVID-19病毒感染病人的单细胞研究,发表在Cell Discov. 2020 May ,标题是:Immune Cell Profiling of COVID-19 Patients in the Recovery Stage by Single-Cell Sequencing,差不多是同一时间发表的哦!

毕竟Cell Discov杂志和 Nature Medicine差别还是蛮大的,不知道是不是研究者特别想把研究写在祖国大地上。

文章实验设计

很清晰的实验设计,如下:

  • 15个人
    • 5个early recovery stage (ERS)
    • 5个late recovery stage (LRS)
    • 5个heathy controls (HCs)
  • 单细胞数量
    • 10个COVID-19 病人,共计 (70,858 PBMCs)
    • 5个正常人,共计 (57,238 cells)

第一次分群

使用 t-distributed stochastic neighbor embedding (t-SNE) 方法降维

  • 全部15个人的 128,096 scRNA-seq profiles
    • 36,442 myeloid cells,
    • 64,247 NK and T cells,
    • 10,177 B cells
  • 标记基因是:
    • CD14, CD1C, and FCGR3A for myeloid cells;
    • CD3E, CD4, CD8A, and NCAM1 for NK and T cells;
    • CD19 for B cells

第二次分群

使用 Uniform manifold approximation and projection (UMAP) 方法降维

  • 36,442 myeloid cells 分成6群
    • Classical CD14 monocytes (M1),
    • non-classical CD16 (FCGR3A) CD14−/ monocytes (M2),
    • intermediate CD14 CD16 monocytes (M3),
    • CD1C cDC2 (M4),
    • CLEC9A cDC1 (M5),
    • pDC (CLEC4C CD123 ) (M6)
  • 64,247 NK and T cells 分成10群
    • naïve CD8 T cells (T5), which expressed high levels of CCR7, LEF1, and TCF7, similar to naïve CD4 T cells;
    • effector memory CD8 T cells (T6, CD8 Tm), which expressed high levels of GZMK;
    • cytotoxic CD8 lymphocytes (CD8 CTL) (T7), which expressed high levels of GZMB, GNLY, and PRF1. Proliferating T cells (T8, Tprol) were TYMS MKI67 cells.
    • naïve CD4 T cells (T1), which expressed high levels ofCCR7, LEF1, and TCF7;
    • central memory CD4 T cells (T2, CD4 Tcm), which expressed high levels of CCR7, but more AQP3 andCD69 compared to naïve CD4 T cells;
    • effector memory CD4 T cells (T3, CD4 Tem), which expressed high levels of CCR6, CXCR6, CCL5, and PRDM1;
    • regulatory T cells (T4, Treg), which expressed FOXP3.
    • C56−CD16 NK cells (NK2), which expressed high levels of CD16 and low levels of CD56.
    • CD56 CD16− NK cells (NK1), which expressed high levels of CD56 and low levels of CD16;
    • NK cells highly expressed NCAM1, KLRF1, KLRC1, andKLRD1; then, we sub-divided the NK cells into
    • CD4 T cells expressed CD3E and CD4; then, we sub-divided these cells into four clusters:
    • CD8 T cells expressed CD8A and CD8B and were sub-divided into three clusters:
  • 10,177 B cells 分成 4群
    • naïve B cells (B1) expressing CD19, CD20 (MS4A1), IGHD, IGHM, IL4R, and TCL1A;
    • memory B cells (B2) expressing CD27, CD38, andIGHG;
    • immature B cells (B3) only expressing CD19 and CD20 (MS4A1);
    • plasma cells (B4) expressing high levels ofXBP1 and MZB1

分析层面的细节,都展现在分群以及细胞亚群的定义上面了。

主要分析

文章的图表很清晰,都是显而易见的分析,读起来很友好反正:

  • 3群细胞(myeloid, NK and T, and B cells),在3组人(five HCs, five ERS patients, and five LRS patients.)的比例
  • myeloid的6个亚群,NK和T细胞的10亚群,以及4个B细胞亚群在3组人的比例情况
  • Classical CD14 monocytes (M1) 的差异分析,全套(火山图,热图,GO/KEGG数据库注释)
  • CD4 T cells 的差异分析,全套(火山图,热图,GO/KEGG数据库注释)
  • Memory B cells and plasma cells (MPB) 的差异分析,全套(火山图,热图,GO/KEGG数据库注释)

也有一点点高级分析,包括sc-BCR, and sc-TCR 数据分析

  • 主要是 (IgA IgG IgE) to (IgD IgM) 比例情况

以及 Cell-to-cell communication ,这些分析可以在:单细胞转录组数据的个性化分析汇总全部找到。

0 人点赞